• Title/Summary/Keyword: truss models

Search Result 180, Processing Time 0.026 seconds

Development of the Analytical Model for the Fixed End Stub-Girder System (양단 고정된 스터브 거더 시스템의 해석 모델 개발)

  • 백종성;이승창;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.61-70
    • /
    • 1997
  • This paper presents several modeling methods to analyze the stub-girder system, testifies those methods base on actual test results for the behavior of the simply supported stub-girder system, and finally, by changing the boundary conditions in those models, predicts the behavior of the fixed end stub-girder system. Two different methods are used for the structural modeling. In the first method, the stub-girder is modeled as a vierendeel truss girder, and in the second method, as a finite element model. Both methods use the finite element analysis software package LUSAS™ for linearly elastic analyses and nonlinear analyses.

  • PDF

Structural damage detection based on changes of wavelet transform coefficients of correlation functions

  • Sadeghian, Mohsen;Esfandiari, Akbar;Fadavie Manochehr
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2022
  • In this paper, an innovative finite element updating method is presented based on the variation wavelet transform coefficients of Auto/cross-correlations function (WTCF). The Quasi-linear sensitivity of the wavelet coefficients of the WTCF concerning the structural parameters is evaluated based on incomplete measured structural responses. The proposed algorithm is used to estimate the structural parameters of truss and plate models. By the solution of the sensitivity equation through the least-squares method, the finite element model of the structure is updated for estimation of the location and severity of structural damages simultaneously. Several damage scenarios have been considered for the studied structure. The parameter estimation results prove the high accuracy of the method considering measurement and mass modeling errors.

Study on Ultimate Behavior of Steel Transmission Tower with Residual Stress and Initial Imperfection (잔류응력과 초기변형을 고려한 송전철탑의 비선형 극한거동에 관한 해석적 연구)

  • Chang, Jin Won;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.421-435
    • /
    • 2008
  • This paper presents an investigation on the ultimate behavior of a transmission tower using nonlinear analyses inconsideration of residual stress and initial imperfection. Main members, such as main post, horizontal member and diagonal member of the transmission tower were modeled using beam element. Moreover, submembers of the transmission tower were modeled using truss element. ABAQUS (2004) program was used to perform finite element analyses. Initial condition options of the ABAQUS program considering initial stress and imperfection were used in this study. Before performing the analysis of the total transmission tower, simple angle section models using beam or plate/shell element w ere investigated to verify the appropriateness of ABAQUS analysis models and options. According to the verification results, the beam element was used for nonlinear analyses of the transmission tower. From nonlinear analyses results, buckling failure was in the main member of the leg part because of ${P-{\triangle}}$ effect at that point. Also, this paper includes significant results to define real structural failure modes and quantitative values. This study should be used in the development of a reasonable and economic design method for transmission towers.

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.

Damage Identification Technique for Bridges Using Static and Dynamic Response (정적 및 동적 응답을 이용한 교량의 손상도 추정 기법)

  • Park Woo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.119-126
    • /
    • 2005
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. From a standpoint of both safety and performance, it is desirable to monitor the occurrence, location, and extent of such damage. Structures require complicated element models with a number of degrees of freedom in structural analysis. During experiment much effort and cost is needed for measuring structural parameters. The sparseness and errors of measured data have to be considered during the parameter estimation Of Structures. In this paper we introduces damage identification algorithm by a system identification(S.I) using static and dynamic response. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation and a data measured perturbation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a truss bridge. The assessment results by each method were compared and we could observe that the 5.1 method is superior to the other conventional methods.

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses

  • Lei, Ying;Hua, Wei;Luo, Sujuan;He, Mingyu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.291-304
    • /
    • 2015
  • Compared with the identification of linear structures, it is more challenging to conduct identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification using partial measurements of structural responses for practical application. To cope with these issues, an identification method is proposed in this paper for the detection and parametric identification of structural nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. The proposed method simplifies the identification of nonlinear structures. Numerical examples of the identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear models and locations are used to validate the proposed method.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column (철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구)

  • Mun, Sang-Hun;An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.