• 제목/요약/키워드: truss element

검색결과 298건 처리시간 0.019초

요소 중심의 네트워크 접근법을 이용한 부정정 트러스 구조 해석 (Analysis of Indeterminate Truss Structures by Element-Focused Network Approach)

  • 한이철
    • 한국농공학회논문집
    • /
    • 제58권3호
    • /
    • pp.13-19
    • /
    • 2016
  • Element-focused network analysis method for truss structure is proposed. The propagation process of loads from external loads to connected other elements is similar to that of connections between nodes in accordance with attachment rule in a network. Here nodes indicate elements in a truss structure and edges represent propagated loads. Therefore, the flows of loads in a truss structure can be calculated using the network analysis method, and consequently the structure can also be analyzed. As a first step to analyze a truss structure as a network, we propose a local load transfer rule in accordance with the topology of elements, and then analyze the loads of the truss elements. Application of this method reveal that the internal loads and reactions caused by external loads can be accurately estimated. Consequently, truss structures can be considered as networks and network analysis method can be applied to further complex truss structures.

트러스 모델을 이용한 RC 부재의 변형 해석 (Truss Models for Deformation Analyses of RC Members)

  • 홍성걸;이수곤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.201-206
    • /
    • 2001
  • This paper presents truss model that can be used to determine the deformation as well as strength of RC members. This model is constituted to address plastic hinge rotation at tile deformation concentrated regions under severe lateral load. The behavior of each element of truss model is evaluated on the basis of stress field analysis. The deformation is obtained by combining element deformations with joint rotation. Initial strength is calculated at the first failure of any element, and strength deterioration after failure depends on the strength reduction of this element. The proposed model will provide useful tools in seismic design of ductility-required members.

  • PDF

풍하중이 작용하는 고용량 송전철탑의 해석을 통한 응력 분포 고찰 (A Study for Stress Distribution of the High-voltage Transmission Tower Under Wind Forces)

  • 장진원;김승준;박종섭;강영종
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.75-78
    • /
    • 2007
  • The structural methodology in designing a transmission tower have been performed to assume a simple truss behavior. But there're quite differences between a simple truss behavior and a real one. A suitable explanation for a structural stability can be expressed as a semi-rigid connection instead of the assumed hinged connection. This study proposes an alternative structural analysis modelling strategy for the transmission tower design. Proposed element models are truss element model, beam element model, and combined beam-truss element model. The static finite element analysis shows that there's a moment distribution between a mainpost member and the other bracing member.

  • PDF

Finite element modeling of tubular truss bearings

  • Kozy, B.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.49-70
    • /
    • 2005
  • This paper reports on finite element analysis techniques that may be applied to the study of circular hollow structural sections and related bearing connection geometries. Specifically, a connection detail involving curved steel saddle bearings and a Structural Tee (ST) connected directly to a large-diameter Hollow Structural Section (HSS) truss chord, near its open end, is considered. The modeling is carried out using experimentally verified techniques. It is determined that the primary mechanism of failure involves a flexural collapse of the HSS chord through plastification of the chord wall into a well-defined yield line mechanism; a limit state for which a shell-based finite element model is well-suited to capture. It is also found that classical metal plasticity material models may be somewhat limited in their applicability to steels in fabricated tubular members.

슬라이딩을 허용하는 다절점 케이블요소 (A Multi-noded Cable Element Considering Sliding Effects)

  • 김문영;이준석;한만엽;김성보;김낙경
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.449-457
    • /
    • 2005
  • 다양한 케이블지지 시스템에 적용이 가능한 슬라이딩을 허용하는 다절점 케이블-트러스 요소를 개발한다. 먼저 일반적인 2절점 케이블-트러스 요소에 대한 유한요소 정식화 과정을 요약하고, 이를 토대로 여러 절점에 연결되어 장력은 동일하지만 절점에서 슬라이딩이 가능한 다절점 케이블-트러스 요소의 탄성강도행렬을 유도한다. 개발된 케이블-트러스 요소를 검증하기 위하여, 케이블 장력을 부정정력으로 선택하고 적합조건을 이용하여 장력을 산정하는 방법(유연도법)을 제시하고 두 방법에 의한 장력 값을 비교한다. 또한 상용 유한요소 해석프로그램의 2절점 트러스요소를 사용한 해석결과와도 비교, 분석한다.

Seismic analysis of steel structure with brace configuration using topology optimization

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Ji, Jing
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.501-515
    • /
    • 2016
  • Seismic analysis for steel frame structure with brace configuration using topology optimization based on truss-like material model is studied. The initial design domain for topology optimization is determined according to original steel frame structure and filled with truss-like members. Hence the initial truss-like continuum is established. The densities and orientation of truss-like members at any point are taken as design variables in finite element analysis. The topology optimization problem of least-weight truss-like continuum with stress constraints is solved. The orientations and densities of members in truss-like continuum are optimized and updated by fully-stressed criterion in every iteration. The optimized truss-like continuum is founded after finite element analysis is finished. The optimal bracing system is established based on optimized truss-like continuum without numerical instability. Seismic performance for steel frame structures is derived using dynamic time-history analysis. A numerical example shows the advantage for frame structures with brace configuration using topology optimization in seismic performance.

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

A comparative study on optimum design of multi-element truss structures

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.521-535
    • /
    • 2016
  • A Harmony Search (HS) and Genetic Algorithms (GA), two powerful metaheuristic search techniques, are used for minimum weight designs of different truss structures by selecting suitable profile sections from a specified list taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB interacting with SAP2000-OAPI to obtain solution of design problems. The stress constraints according to AISC-ASD (Allowable Stress Design) and displacement constraints are considered for optimum designs. Three different truss structures such as bridge, dome and tower structures taken from literature are designed and the results are compared with the ones available in literature. The results obtained from the solutions for truss structures show that optimum designs by these techniques are very similar to the literature results and HS method usually provides more economical solutions in multi-element truss problems.

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

초대형 구조모델을 활용한 쉘구조물의 용접변형 해석 (A weld-distortion analysis method of the shell structures using ultra structural FE model)

  • 하윤석;이명수
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.