• Title/Summary/Keyword: truncation strategy

Search Result 6, Processing Time 0.02 seconds

Error Control Strategy in Error Correction Methods

  • KIM, PHILSU;BU, SUNYOUNG
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.301-311
    • /
    • 2015
  • In this paper, we present the error control techniques for the error correction methods (ECM) which is recently developed by P. Kim et al. [8, 9]. We formulate the local truncation error at each time and calculate the approximated solution using the solution and the formulated truncation error at previous time for achieving uniform error bound which enables a long time simulation. Numerical results show that the error controlled ECM provides a clue to have uniform error bound for well conditioned problems [1].

Solution of the two-dimensional scalar wave equation by the time-domain boundary element method: Lagrange truncation strategy in time integration

  • Carrer, J.A.M.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.263-278
    • /
    • 2006
  • This work presents a time-truncation scheme, based on the Lagrange interpolation polynomial, for the solution of the two-dimensional scalar wave problem by the time-domain boundary element method. The aim is to reduce the number of stored matrices, due to the convolution integral performed from the initial time to the current time, and to keep a compromise between computational economy and efficiency and the numerical accuracy. In order to verify the accuracy of the proposed formulation, three examples are presented and discussed at the end of the article.

Fast Cardiac CINE MRI by Iterative Truncation of Small Transformed Coefficients

  • Park, Jinho;Hong, Hye-Jin;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • Purpose: A new compressed sensing technique by iterative truncation of small transformed coefficients (ITSC) is proposed for fast cardiac CINE MRI. Materials and Methods: The proposed reconstruction is composed of two processes: truncation of the small transformed coefficients in the r-f domain, and restoration of the measured data in the k-t domain. The two processes are sequentially applied iteratively until the reconstructed images converge, with the assumption that the cardiac CINE images are inherently sparse in the r-f domain. A novel sampling strategy to reduce the normalized mean square error of the reconstructed images is proposed. Results: The technique shows the least normalized mean square error among the four methods under comparison (zero filling, view sharing, k-t FOCUSS, and ITSC). Application of ITSC for multi-slice cardiac CINE imaging was tested with the number of slices of 2 to 8 in a single breath-hold, to demonstrate the clinical usefulness of the technique. Conclusion: Reconstructed images with the compression factors of 3-4 appear very close to the images without compression. Furthermore the proposed algorithm is computationally efficient and is stable without using matrix inversion during the reconstruction.

Study of Effectiveness of Signal Preemption Strategy Depending on Train Speed at Intersections Near Highway-Railroad Grade Crossings (철도건널목 인근 신호교차로에서의 우선신호 전략 비교분석(열차속도를 중심으로))

  • Jo, Han-Seon;Kim, Won-Ho;O, Ju-Taek;Sim, Jae-Ik
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.17-26
    • /
    • 2007
  • Because the prime objective of the current preemption methods at signalized intersections near highway-railroad grade crossings(IHRGCs) is to clear the crossing, secondary objectives such as safe pedestrian crossing time and minimized delay often are given less consideration or are ignored completely during the preemption. Under certain circumstances state-of-the-practice traffic signal preemption strategies may cause serious pedestrian safety and efficiency problems at IHRGCs. An improved transition preemption strategy(ITPS) that is specifically designed to improve intersection performance while maintaining or improving the current level of safety was developed by Cho and Rilett. Even if the new transition preemption strategy improved both the safety and efficiency of IHRGCs, the performance of the strategy is affected by train speed. Understanding the impact of this factor is essential in order to implement ITPS. In this paper, the effects of train speed were analyzed using a VISSIM simulation model which was calibrated to field conditions. It was concluded that the delay is affected more by train speed than the transitional preemption strategy and the safety of the intersection is not affected by train speed once an advanced preemption warning time(APWT) is equal to or greater than 90 seconds.

Pro-apoptotic effect of the novel benzylidene derivative MHY695 in human colon cancer cells

  • Gwangbeom Heo;Dongwan Kang;Chaeun Park;Su Jin Kim;Jieun Choo;Yunna Lee;Jin‑Wook Yoo;Yunjin Jung;Jaewon Lee;Nam Deuk Kim;Hae Young Chung;Hyung Ryong Moon;Eunok Im
    • Oncology Letters
    • /
    • v.18 no.3
    • /
    • pp.3256-3264
    • /
    • 2019
  • The induction of apoptosis is a useful strategy in anti-cancer research. Various Moon Hyung Yang (MHY) compounds have been developed as novel anti-cancer drug candidates; in the present study, the pro-apoptotic effects of (Z)-5-(3-ethoxy-4-hydroxybenzylidene)-2-thioxothiazolidin-4-one (MHY695) on HCT116 human colon cancer cells were assessed. MTT assays were performed to investigate the dose-dependent cytotoxic effects of MHY695 on HCT116 cells. Immunofluorescence staining and flow cytometry analyses were performed to identify apoptotic cell death, and western blot analysis was used to investigate the apoptotic-signaling pathways. A mouse xenograft model was also used to determine the effects of MHY695 in vivo. MHY695 decreased the viability of HCT116 cells and induced apoptotic cytotoxicity. The apoptotic mechanisms induced by MHY695 involved the dephosphorylation of Bcl-2-associated agonist of cell death protein following protein kinase B inactivation, induced myeloid leukaemia cell differentiation protein and BH3-interacting domain death agonist truncation, caspase-3 and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, MHY695 significantly suppressed tumor growth in the mouse xenograft model, compared with the vehicle control. Notably, MHY695 exhibited potent anti-cancer effects in four different types of human colon cancer cell line, including Caco-2, DLD-1, HT-29 and HCT116. Additionally, MHY695 showed reduced cytotoxicity in NCM460, normal colonic epithelial cells. Furthermore, MHY-induced cytotoxicity in colon cancer cells was independent of the tumor suppressor protein p53. Collectively, these observations suggested that MHY695 may be a novel drug for the treatment of colon cancer.

Anisomycin, an Inhibitor of Protein Synthesis, Overcomes TRAIL Resistance in Human Hepatocarcinoma Cells via Caspases Activation and Bid Downregulation (Caspase 활성 및 Bid의 발현 저하를 통한 단백질 생성 억제제인 anisomycin의 인체간암세포에서 TRAIL 매개 apoptosis 유발의 활성화)

  • Jin, Cheng-Yun;Park, Cheol;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.769-776
    • /
    • 2014
  • Anisomycin, also known as flagecidin, is an antibiotic produced by Streptomyces griseolus that inhibits protein synthesis by binding to the ribosomal 28S subunit. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptotic cell death. TRAIL primarily causes apoptosis in tumor cells by binding to death receptors. Many human cancer cell lines are refractory to TRAIL-induced cell death. In this study, we investigated whether anisomycin could enhance TRAIL-mediated apoptosis in TRAIL-resistant human hepatocarcinoma Hep3B cells. Treatment with anisomycin and TRAIL alone did not reduce cell viability in Hep3B cells. However, in the presence of TRAIL, the anisomycin concentration dependently reduced the cell viability. Our results indicate that anisomycin sensitizes Hep3B cells to TRAIL-mediated apoptosis and that this occurs, at least partly, via caspase activation. Interestingly, Bid knockdown by small interfering RNA significantly reduced the induction of apoptosis in combination with anisomycin and TRAIL, indicating that anisomycin effectively acts to lower the threshold at which TRAIL-mediated truncated Bid triggers the mitochondrial-mediated apoptosis program in Hep3B cells. Therefore, the use of TRAIL in combination with anisomycin might provide an effective therapeutic strategy for the safe treatment of some TRAIL-resistant cancer cells.