• Title/Summary/Keyword: trueness

Search Result 53, Processing Time 0.017 seconds

Comparison of the accuracy of digital impressions and traditional impressions: Systematic review (디지털 인상법과 전통적 인상법의 정확도 비교: 체계적 고찰)

  • Kim, Kyoung-Rok;Seo, Kweonsoo;Kim, Sunjai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.258-268
    • /
    • 2018
  • Purpose: This study systematically examines literatures on the suitability of prostheses and accuracy of obtained impressions to see if digital impressions using intraoral scanners can replace traditional impressions. Materials and methods: A MEDLINE/PubMed search and manual search was performed for studies written in English about accuracy of digital impression published in dental journals from August 1, 1997, to July 31, 2017. Depending on criteria, the data for the selected articles were independently organized into standardized spreadsheets by 2 reviewers. Results: Among the total 35 studies met the inclusion criteria, there were 26 studies comparing the suitability of prostheses, and 9 studies comparing the accuracy of impressions through scan data without prostheses. Most studies used prostheses to compare the accuracy of impression techniques. Conclusion: This review suggests that making single crown or mesio-distally short prostheses with digital impressions is clinically reliable in natural teeth. However, there is still a limit to making mesio-distally long prostheses with digital impressions from the lack of related studies. Digital impression cannot fully replace traditional impressions in implant prostheses yet.

Analysis of the 2-dimensional marginal fit of the occlusal surface and the 3-dimensional accuracy of the inner surface of the occlusal surface according to the inlay prosthesis structure made of composite resin (복합레진으로 제작한 인레이 보철물 구조에 따른 교합면 부위의 2차원 변연 적합도 및 내면 부위의 3차원 정확성 분석)

  • Kim, Dong-Yeon;Lee, Tae-Hee;Park, Dong-In;Park, Jin-Young;Jeong, Il-Do;Lee, Ha-Na;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.41 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Purpose: To evaluate 2D and 3D of occulsal, mesial-occlusal and mesial-occlusal-distal cavity of composite resin inlay. Methods: Abutment tooth 16, 36 of FDI system was selected for the study. Inlay prostheses classified as occlusal cavity (OC group), mesial-occlusal (MOC) and mesial-occlusal-distal cavity (MODC) were prepared using composite resin. Composite resin was injected with composite resin in prepared tooth cavity and then photopolymerized with UV light. Additional thermal polymerization was performed. Marginal gap of composite resin inlays were measured by digital microscope(x160) with silicone replica technique. The data was analyzed from statistical software for Kruskal-Wallis test (${\alpha}=0.05$). 3-dimensional analysis was analyzed through superimposition method. Results: The smallest 2D marginal fit measure of the three groups was $47.0{\pm}21.6{\mu}m$ in the MOC group. The largest 2D marginal was $69.1{\pm}33.8{\mu}m$ in the MODC group. In the trueness of the three groups, the most accurate figure was $14.4{\pm}2.3{\mu}m$ for the MODC group. In Precision, the most accurate figure was $14.5{\pm}4.3{\mu}m$ for the MODC group. Conclusion : In this study, 2D marginal fit of OC, MOC, and MODC cavities fabricated with composite resin was applicable to all clinical applications. In the 3D inner surface accuracy evaluation, the MODC group showed the accuracy results.

Accuracy comparison of 3-unit fixed dental provisional prostheses fabricated by different CAD/CAM manufacturing methods (다양한 CAD/CAM 제조 방식으로 제작한 3본 고정성 임시 치과 보철물의 정확도 비교)

  • Hyuk-Joon Lee;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Purpose: This in vitro study aimed to compare the trueness of 3-unit fixed dental provisional prostheses (FDPs) fabricated by three different additive manufacturing and subtractive manufacturing procedures. Methods: A reference model with a maxillary left second premolar and the second molar prepped and the first molar missing was scanned for the fabrication of 3-unit FDPs. An anatomically shaped 3-unit FDP was designed on computer-aided design software. 10 FDPs were fabricated by subtractive (MI group) and additive manufacturing (stereolithography: SL group, digital light processing: DL group, liquid crystal displays: LC group) methods, respectively (N=40). All FDPs were scanned and exported to the standard triangulated language file. A three-dimensional analysis program measured the discrepancy of the internal, margin, and pontic base area. As for the comparison among manufacturing procedures, the Kruskal-Wallis test and the Mann-Whitney test with Bonferroni correction were evaluated statistically. Results: Regarding the internal area, the root mean square (RMS) value of the 3-unit FDPs was the lowest in the MI group (31.79±6.39 ㎛) and the highest in the SL group (69.34±29.88 ㎛; p=0.001). In the marginal area, those of the 3-unit FDPs were the lowest in the LC group (25.39±4.36 ㎛) and the highest in the SL group (48.94±18.98 ㎛; p=0.001). In the pontic base area, those of the 3-unit FDPs were the lowest in the LC group (8.72±2.74 ㎛) and the highest in the DL group (20.75±2.03 ㎛; p=0.001). Conclusion: A statistically significant difference was observed in the RMS mean values of all the groups. However, in comparison to the subtractive manufacturing method, all measurement areas of 3-unit FDPs fabricated by three different additive manufacturing methods are within a clinically acceptable range.