• Title/Summary/Keyword: truck and lane load

Search Result 11, Processing Time 0.024 seconds

Evaluation of Impact Factor in Composite Cable-Stayed Bridges under Reliability-based Live Load Model (신뢰도 기반 활하중모델에 의한 강합성 사장교의 충격계수 평가)

  • Park, Jae Bong;Park, Yong Myung;Kim, Dong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2013
  • AASHTO LRFD and Korean Bridge Design Code (Limit State Design) specify to consider Truck and Lane load simultaneously determined from reliability-based live load model, and impact shall be applied to the truck load while it shall not be applied to the lane load. In this paper, vehicle-bridge interaction analysis under moving truck and lane loads were performed to estimate impact factor of the cables and girders for the selected multi-cable-stayed composite bridges with 230m, 400m and 540m main span. A 6-d.o.f. vehicle was used for truck load and a series of single-axle vehicles was applied to simulate equivalent lane load. The effect of damping ratio on the impact factor was estimated and then the essential parameters to impact factor, i.e., road surface roughness and vehicle speed were considered. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck load only in the vehicle-bridge interaction analysis. The impact factors evaluated from dynamic interaction analysis were also compared with those by the influence line method that is currently used in design practice to estimate impact factor in cable-stayed bridge.

Study on the Effect of the Payload and Weight Position on the Handling and Ride Comfort of a Truck (트럭의 화물적재량과 적재위치가 조안성 및 승차감에 미치는 영향에 관한 연구)

  • Cha, Hyun-Kyung;Choi, Gyu-Suk;Sohn, Jeong-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.23-30
    • /
    • 2013
  • In this paper, the payload condition is considered and computer simulation is carried out to analyze the dynamic behavior of the middle-sized truck under the condition with different weight and location. The computer model for the truck is established and ADAMS/Car is employed to simulate the truck vehicle. A single lane change and bump-pass simulation are performed to evaluate the performance according to the weight and the position of it. Effects of the location and weight of commercial vehicle are analyzed. According to the simulation results, the front deck is preferred as the load location.

The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance (대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향)

  • Moon, Il-Dong;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

Determination of Multi-Lane Loading Factors for Vehicular Load of Bridges using Weigh-In-Motion Data (고속축중계 자료를 이용한 차량하중 다차로재하계수 결정)

  • Hwang, Eui-Seung;Nguyen, Thi Hang
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.123-132
    • /
    • 2011
  • The purpose of this study is to calculate and propose rational multi-lane loading factors for bridge design considering the probability of simultaneous truck passing in adjacent lanes and real truck weights. The probability of simultaneous truck passing is calculated by analyzing video image taken at various locations in highways and national roads. Weigh-In-Motion system data at two locations are used, which is combined with the probability of multiple presence to calculate the multi-lane loading factors for typical 2 lane and 5 lane bridges. Statistical properties of multi-lane loading factors are also calculated assuming that locations for video images and WIM data represent the overall traffic condition in the country. Results are compared with various design codes in the world and they show that the values are between the current Korea Bridge Design Code and AASHTO LRFD specification or Eurocode and are similar to Canadian Code.

A Study on the Effects of Hysteretic Characteristics of Leaf Springs on Handling of a Large-Sized Truck (판스프링의 이력특성이 대형트럭의 조종성능에 미치는 영향에 관한 연구)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.157-164
    • /
    • 2001
  • This paper performs static and dynamic tests of a multi-leaf spring and a tapered leaf spring to investigate their hysteretic characteristics. In the static test, trapezoidal input load is applied with 0.1Hz excitation frequency and with zero initial loading conditions. In the dynamic test, sinusoidal input load is applied with five excitation amplitudes and three excitation frequencies. In these tests, static and dynamic hysteretic characteristics of the multi-leaf spring and the tapered leaf spring are compared, and, the effects of excitation amplitudes and frequencies on dynamic spring rate are also shown. In this paper, actual vehicle tests are performed to study the effects of hysteretic characteristics of the large-sized truck's handling performance. The multi-leaf spring or the tapered leaf spring is used in the front suspension. The actual vehicle test is performed in a double lane change track with three velocities. Lateral acceleration, yaw rate and roll angle are measured using a gyro-meter located at the mass center of the cab. The test results showed that a large-sized truck with a tapered leaf spring needs to have an additional apparatus such as roll stabilizer bar to increase the roll stabilizer due to hysteretic characteristics.

  • PDF

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.

Evaluation of Impact Factor in Suspension Bridges under A Series of Moving Vehicles (일련의 주행 차량에 의한 현수교의 충격계수 평가)

  • Park, Yong Myung;Kim, Dong Hyun;Kim, Hee Soon;Park, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.485-498
    • /
    • 2014
  • In this paper, vehicle-bridge interaction analysis under a series of moving vehicles to simulate a lane load was performed to estimate impact factor of the main cable, hanger and girder for the selected suspension bridges with 404m and 1545m main span. Korea Bridge Design Code(Limit State Design) was selected for the live model in which KL-510 truck was modeled 6-d.o.f. vehicle and a lane load was simulated by a series of single-axle vehicles. For the 404m main span bridge, hinge-type and floating-type girders at the tower were considered to examine the impact factor according to the connection and supporting type of the girders. The parameters considered herein are the types of live load-a truck only and a truck plus lane load, eccentricity of moving vehicles, road surface roughness and vehicle speed. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck only. The impact factors were also evaluated by using the influence line method that is commonly used in cable-supported bridges and compared with those from vehicle-bridge interaction analysis.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load by 3D Numerical Analysis (3차원 수치해석에 의한 표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Seo, Seunghwan;Jin, Hyunsik;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2019
  • The lateral load from traffic depends on standard truck's axle loads and locations, loading distance from the inner wall. The method of limit state design has been adopted and used for design of roads in the Republic of Korea since 2015. The concept of equivalent height of soil accounting for traffic loading is often used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the standard truck of the nation, based on the findings from analytical solutions using 3D finite element method. Compare to US, the standard truck loading has a structure where the axle load is concentrated so that the equivalent load height is estimated to be slightly larger than AASHTO for lower retaining wall height. It would be reasonable to present the equivalent load height in Korea more conservatively than AASHTO in terms of securing long term stability of the retaining wall structure.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load (표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Kim, Duhwan;Jin, Hyunsik;Seo, Seunghwan;Park, Jaehyun;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.119-128
    • /
    • 2018
  • Limit state design has been implemented in Korea since 2015; however, there exists no specification of lateral load determination on retaining wall due to the Korean standard traffic load on retaining wall's backfill surface. The lateral load from traffic depends on lane number, standard truck's axle loads and locations, loading distance from the inner wall. The concept of equivalent height of soil accounting for traffic loadings is typically used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the Korean standard truck, based on the findings from analytical solutions using Bounessq's theory and numerical assessment using 2D finite element method. Consequently, it was found that the equivalent heights of soil from the Korean standard truck load were lower for lower retaining wall height.

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.