• Title/Summary/Keyword: troposphere

Search Result 172, Processing Time 0.02 seconds

Effects of geomagnetic storms on the middle atmosphere and troposphere by ground-based GPS observations

  • Jin, Shuang-Gen;Park, Jong-Uk;Park, Pil-Ho;Cho, Jung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.47-51
    • /
    • 2006
  • Among Solar activities' events, the geomagnetic storms are believed to cause the largest atmospheric effects. The geomagnetic storm is a complex process of solar wind/magnetospheric origin. It is well known to affect severely on the ionosphere. However, this effect of this complex process will maybe act at various altitudes in the atmosphere, even including the lower layer and the neutral middle atmosphere, particularly the stratosphere. Nowadays, the GPS-derived ZTD (zenith tropospheric delay) can be transformed into the precipitable water vapor (PWV) through a function relation, and further has been widely used in meteorology, especially in improving the precision of Numerical Weather Prediction (NWP) models. However, such geomagnetic effects on the atmosphere are ignored in GPS meteorology applications. In this paper, we will investigate the geomagnetic storms' effects on the middle atmosphere and troposphere (0-100km) by GPS observations and other data. It has found that geomagnetic storms' effect on the atmosphere also appears in the troposphere, but the mechanism to interpret correlations in the troposphere need be further studied.

  • PDF

Application of Chemical Ionization Mass Spectrometry to Heterogeneous Reactions of OH with Aerosols of Tropospheric Interest

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Studies performed on heterogeneous reactions of hydroxyl radicals (OH) in aerosol materials of tropospheric interest are presented, focusing on the chemical ionization mass spectrometric approach. Kinetic investigations of these reactions reduced deviation in the estimation of OH concentration in the troposphere by atmospheric modeling from field measurements. Recently, OH uptake was investigated under wet conditions to acquire kinetic information under more realistic conditions representative of the troposphere. The information on the mechanism and kinetics of OH uptake by tropospheric aerosol materials will contribute to the updating of atmospheric models, allowing a better understanding of the troposphere.

Vertical Distribution of Temperature and Tropopause Height Changes in Future Projections using HadGEM2-AO Climate Model (HadGEM2-AO를 이용한 연직기온 분포와 대류권계면 높이 변화 미래전망)

  • Lee, Jaeho;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • We present here the future changes in vertical distribution of temperature and tropopause height using the HadGEM2-AO climate model forced with Representative Concentration Pathways (RCPs) scenarios. Projected changes during the 21st century are shown as differences from the baseline period (1971~2000) for global vertical distribution of temperature and tropopause height. All RCP scenarios show warming throughout the troposphere and cooling in the stratosphere with amplified warming over the lower troposphere in the Northern Hemisphere high latitudes. Upper troposphere warming reaches a maximum in the tropics at the 300 hPa level associated with lapse-rate feedback. Also, the cooling in the stratosphere and the warming in the troposphere raises the height of the tropopause.

Surface Ozone Episode Due to Stratosphere-Troposphere Exchange and Free Troposphere-Boundary Layer Exchange in Busan During Asian Dust Events

  • Moon, Y.S.;Kim, Y.K.;K. Strong;Kim, S.H.;Lim, Y.K.;Oh, I.B.;Song, S.K.
    • Journal of Environmental Science International
    • /
    • v.11 no.5
    • /
    • pp.419-436
    • /
    • 2002
  • The current paper reports on the enhancement of O$_3$, CO, NO$_2$, and aerosols during the Asian dust event that occurred over Korea on 1 May 1999. To confirm the origin and net flux of the O$_3$, CO, NO$_2$, and aerosols, the meteorological parameters of the weather conditions were investigated using Mesoscale Meteorological Model 5(MM5) and the TOMS total ozone and aerosol index, the back trajectory was identified using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model(HYSPLIT), and the ozone and ozone precursor concentrations were determined using the Urban Ashed Model(UAM). In the presence of sufficiently large concentrations of NO$\sub$x/, the oxidation of CO led to O$_3$ formation with OH, HO$_2$, NO, and NO$_2$ acting as catalysts. The sudden enhancement of O$_3$, CO, NO$_2$ and aerosols was also found to be associated with a deepening cut-off low connected with a surface cyclone and surface anticyclone located to the south of Korea during the Asian dust event. The wave pattern of the upper trough/cut-off low and total ozone level remained stationary when they came into contact with a surface cyclone during the Asian dust event. A typical example of a stratosphere-troposphere exchange(STE) of ozone was demonstrated by tropopause folding due to the jet stream. As such, the secondary maxima of ozone above 80 ppbv that occurred at night in Busan, Korea on 1 May 2001 were considered to result from vertical mixing and advection from a free troposphere-boundary layer exchange in connection with an STE in the upper troposphere. Whereas the sudden enhancement of ozone above 100 ppbv during the day was explained by the catalytic reaction of ozone precursors and transport of ozone from a slow-moving anticyclone area that included a high level of ozone and its precursors coming from China to the south of Korea. The aerosols identified in the free troposphere over Busan, Korea on 1 May 1999 originated from the Taklamakan and Gobi deserts across the Yellow River. In particular, the 1000m profile indicated that the source of the air parcels was from an anticyclone located to the south of Korea. The net flux due to the first invasion of ozone between 0000 LST and 0600 LST on 1 May 1999 agreed with the observed ground-based background concentration of ozone. From 0600 LST to 1200 LST, the net flux of the second invasion of ozone was twice as much as the day before. In this case, a change in the horizontal wind direction may have been responsible for the ozone increase.

Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation (대류권 오존 재분석 자료의 품질 검증: 포항 오존존데와 비교 검증)

  • Park, Jinkyung;Kim, Seo-Yeon;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Towards an Urban Troposphere

  • Kenoff, Jeffrey A;Gross, Peter
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.15-24
    • /
    • 2022
  • Over the past 30 years, the tall building has seen unprecedented global support. With advanced innovation and many regions around the world discovering increasing growth rates, the tall, supertall, and megatall buildings continue to drastically alter the vertical urbanism of the cities they inhabit. For centuries, urban conditions in most major territories were predominately defined by the street wall and the spaces it shapes. Giambattista Nolli's 1748 Map of Rome most clearly illustrates this significance and possibly solidifies what generations would understand to be the predominant urban condition. As architects, it has been a city's lower vertical wall fabric that has often been the primary focus of efforts to craft an urban experience, and for good reason. Through recent examples of built and unbuilt KPF projects, this paper will explore an upper vertical wall fabric, an urbanism that not only exists at the ground but also within the troposphere.

Long-term Variations of Troposphere-Stratosphere Mean Meridional Circulation (대류권-성층권 평균자오면순환의 장기변동)

  • Seol, Dong-Il
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • Studies of atmospheric general circulation in the troposphere and stratosphere are very important to understand the influence of human activities on the global climate and its change. Recently, the existence of an annual cycle in the circulation has been reported by a number of studies. In this study, the residual mean meridional circulation is calculated by the TEM momentum and continuity equations for the period from December 1985 to November 1995 (10 years), and the long-term variations of the circulation and mass fluxes across the 100hPa surface are examined. The multiple regression statistical model is used to obtain quantitatively the long-term variations. This study is focused especially on mean meridional circulation in the troposphere and stratosphere associated with ENSO (El Ni${\tilde{n}}$o-Southern Oscillation) which is known as a cause of the unusual weather, global climate, and its change. The results show that the global scale troposphere-stratosphere mean meridional circulation is intensified during El Ni${\tilde{n}}$o event and QBO (quasi-biennal oscillation) easterly phase and weakened during La Ni${\tilde{n}}$o event and QBO westerly phase. The signal of Mount Pinatubo volcanic eruption in June 1991 is obtained. Due to the volcanic eruption the global scale troposphere-stratosphere mean meridional circulation is abruptly intensified.

  • PDF

Analysis of Tropospheric Carbon Monoxide using MOPITT data

  • Lee, Sang-Hee;Park, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.373-377
    • /
    • 2002
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This work analyzes tropospheric carbon monoxide distributions using MOPITT data in East Asia and compared ozone distributions. In general, seasonal CO variations are characterized by a spring peak and decreased in the summer. Also, this work revealed that the seasonal cycles of CO are spring maximum and summer minimum with averaged concentrations ranging from 118ppbv to 170ppbv. The CO monthly means show a similar profiles to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, transport of the CO in the northeast Asia. The CO and O3 seasonal cycles in northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and O3, which tend to give the apparent minimum in summer.

  • PDF

Accuracy Comparison of GPT and SBAS Troposphere Models for GNSS Data Processing

  • Park, Kwan-Dong;Lee, Hae-Chang;Kim, Mi-So;Kim, Yeong-Guk;Seo, Seung Woo;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.183-188
    • /
    • 2018
  • The Global Navigation Satellite System (GNSS) signal gets delayed as it goes through the troposphere before reaching the GNSS antenna. Various tropospheric models are being used to correct the tropospheric delay. In this study, we compared effectiveness of two popular troposphere correction models: Global Pressure and Temperature (GPT) and Satellite-Based Augmentation System (SBAS). One-year data from a particular site was chosen as the test case. Tropospheric delays were computed using the GPT and SBAS models and compared with the International GNSS Service tropospheric product. The bias of SBAS model computations was 3.4 cm, which is four times lower than that of the GPT model. The cause of higher biases observed in the GPT model is the fact that one cannot get wet delays from the model. If SBAS-based wet delays are added to the hydrostatic delays computed using the GPT model, then the accuracy is similar to that of the full SBAS model. From this study, one can conclude that it is better to use the SBAS model than to use the GPT model in the standard code-pseudorange data processing.