• Title/Summary/Keyword: trophic

Search Result 476, Processing Time 0.028 seconds

Assessment of Trophic State for Yongdam Reservoir Using Satellite Imagery Data (인공위성 영상자료를 이용한 용담호의 영양상태 평가)

  • Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • The conventional water quality measurements by point sampling provide only site specific temporal water quality information but not the synoptic geographic coverage of water quality distribution. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly involved in the water quality monitoring research. In other to assess a trophic state of Yongdam reservoir using satellite imagery data, I obtained Landsat ETM data and water quality data on 16th September and 18th October 2001. The approach involved acquisition of water quality samples from boats at 33 sites on 16th September and 30 sites on 18th October 2001, simultaneous with Landsat-7 satellite overpass. The correlation coefficients between the DN values of the imagery and the concentrations of chlorophyll-a were analyzed. The visible bands(band 1,2,3) and near infrared band(band 4) data of September image showed the correlation coefficient values higher than 0.9. The October image showed the correlation coefficient values about 0.7 due to the atmospheric effect and low variation of chlorophyll-a concentration. Regression models between the chrophyll-a concentration and DN values of the Landsat imagery data have been developed for each image. The regression model was determined based on the spectral characteristics of chlorophyll, so the green band(band 2) and near infrared band(band 4) were selected to generate a trophic state map. The coefficient of determination(R2) of the regression model for 16th September was 0.95 and that of the regression model for 18th October was 0.55. According to the trophic state map made based on Aizaki's TSI and chlorophyll-a concentration, the trophic state of Yongdam reservoir was mostly eutrophic state during this study.

Water Quality Assessment using Trophic Status Index and Attached Diatom Index in 10 Reservoirs including Ye-dang Reservoir of Chungcheongnam-do (충남 예당저수지를 포함한 10개 저수지의 영양단계 및 부착규조지수를 이용한 수질평가)

  • Song, Mi-Ae;Kim, Ji-Won;Kim, Hun-Nyun;Kong, Dong-Soo;Lee, Ok-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.155-171
    • /
    • 2011
  • The research assessed water quality using physico-chemical factors, trophic status index and attached diatom index in 10 reservoirs located in Chungcheongnam-do from October 2007 to June 2008. The physico-chemical water quality assessments revealed that Dangjin-gun (St. 1~5), which displayed a high chemical oxygen demand (V and VI) and chlorophyll-${\alpha}$ (Eutrophic-Hypereutrophic), was more polluted than Yesan and Cheongyang-gun. The sample were also hypereutrophic [trophic status index (TSI) 74.6] and ${\beta}$-mesosaprobic [diatom assemblage index to the organic water pollution (DAIpo) 44.47]. Yesan and Cheongyang-gun. Which were mid-level in their pollution status, were eutrophic (TSI 56.9) and ${\alpha}$-oligosaprobic (DAIpo 60.11). TSI correlated strongly with the attached diatom index (of DAIpo 0.60~0.62, and trophic diatom index of 0.72~0.74). Hence, the attached diatom index can be used with the trophic status assessment of lakes using TSI, and lake trophic status index (LTSI).

Protective Effect of Trophic Factor Supplementation on Cold Ischemia/Rewarming Injury to Kidney Cells (Trophic factor supplementation에 의한 cold ischemia/rewarming손상으로 부터의 신장 세포 보호)

  • Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.25 no.5
    • /
    • pp.355-358
    • /
    • 2008
  • The aim of this study was to investigate whether trophic factor supplementation (TFS) enhance the survival of kidney cell during cold ischemic storage and rewarming. The effect of TFS on the phosphorylation of p44/42 and p38 mitogen activated protein kinases (MAPK) signaling pathway was determined by Western blot. Apoptotic changes after cold ischemic storage and rewarming was determined by 4',6'-diamino-2-phenylindole (DAPI) staining. The cell viability was evaluated by live assay. TFS significantly decreased p44/42 and p38 MAPK activity induced by cold ischemic injury and rewarming (p < 0.05). The number of apoptotic cells was decreased after 5 minute rewarming in the presence of TFS. TFS significantly increased the cell viability after 5 minute rewarming (p < 0.05). Therefore, it was concluded that trophic factor supplementation protects kidney tubule cells from cold ischemic and rewarming injury via the inhibition of p44/42 and p38 MAPK activation and reducing apoptotic change.

Bio-accumulation of 210Pb and 210Po within the Trophic Level of Phytoplankton-Zooplankton-Anchovy-Mackerel in the Coastal Water of the Jeju Island, Korea (제주도 근해 식물플랑크톤-동물플랑크톤-멸치-고등어 영양단계에서 210Pb과 210Po의 생물농축)

  • Cho, Boeun;Kim, Suk Hyun
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • The activity concentrations of $^{210}Po$ and $^{210}Pb$ within phytoplankton-zooplankton-anchovy-mackerel in the coastal water of the Jeju Island were determined to understand their distribution and bio-accumulation along the trophic level. In the surface water, the total activity concentrations of $^{210}Po$ and $^{210}Pb$ were $0.83{\pm}0.004mBq\;kg^{-1}$ and $1.27{\pm}0.03mBq\;kg^{-1}$. And the dissolved activity concentration of $^{210}Po$ and $^{210}Pb$ were $0.75{\pm}0.06mBq\;kg^{-1}$ and $1.22{\pm}0.09mBq\;kg^{-1}$ respectively. In the phytoplankton, the concentration factor (CF) of $^{210}Po$ and $^{210}Pb$ were $1.5{\times}10^5$ and $2.6{\times}10^4$ shows $^{210}Po$ is 5 times higher compared to $^{210}Pb$. The similar CF factor in the zooplankton of $^{210}Po$ was derived as $1.4{\times}10^5$. The CF of $^{210}Po$ in anchovy was increased twice compared to that in plankton. This is the evidence that there is $^{210}Po$ bio-magnification in the trophic level of plankton-anchovy. However the $^{210}Po$ activity concentration in the muscle tissue of mackerel was one-hundred times lower than that in anchovy. This reflects that in the trophic level of anchovy-mackerel, the bio-accumulation of $^{210}Po$ is decreased. The activity concentrations of $^{210}Po$ in the internal organs of anchovy and mackerel were 8 to 38 times higher than those in muscle tissues. In phytoplankton-zooplankton-anchovy, the CF of $^{210}Pb$ was decreased five times along the trophic level in order. In anchovy-mackerel it was decreased by 30-70%.

Trophic State Index (TSI) and Empirical Models, Based on Water Quality Parameters, in Korean Reservoirs (우리나라 대형 인공호에서 영양상태 평가 및 수질 변수를 이용한 경험적 모델 구축)

  • Park, Hee-Jung;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.14-30
    • /
    • 2007
  • The purpose of this study was to evaluate trophic conditions of various Korean reservoirs using Trophic State Index (TSI) and predict the reservoir conditions by empirical models. The water quality dataset (2000, 2001) used here were obtained from the Ministry of Environment, Korea. The water quality, based on multi-parameters of dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), suspended solid (SS), Secchi depth (SD), chlorophyll-${\alpha}$ (CHL), and conductivity largely varied depending on the sampling watersheds and seasons. In general, trophic conditions declined along the longitudinal axis of headwater-to-the dam and the largest seasonal variations occurred during the summer monsoon of July-August. Major inputs of TP occurred during the monsoon (r=0.656, p=0.002) and this pattern was similar to solid dynamics of SS (r=0.678, p<0.001). Trophic parameters including CHL, TP, SD, and TN were employed to evaluate how the water systems varies with season. Trophic State Index (TSI, Carlson, 1977), based on TSI (CHL), TSI (TP), and TSI (SD), ranged from mesotrophic to eutrophic. However, the trophic state, based on TSI (TN), indicated eutrophic-hypereutrophic conditions in the entire reservoirs, regardless of the seasons, indicating a N-rich system. Overall, nutrient data showed that phosphorus was a primary factor regulating the trophic state. The relationships between CHL (eutrophication index) vs. trophic parameters (TN, TP, and SD) were analysed to develop empirical models which can predict the trophic status. Regression analyses of log-transformed seasonal CHL against TP showed that the value of $R^2$ was 0.31 (p=0.017) in the premonsoon but was 0.69 (p<0.001) during the postmonsoon, indicating a greater algal response to the phosphorus during the postmonsoon. In contrast, SD had reverse relation with TP, CHL during all season. TN had weak relations with CHL during all seasons. Overall, data suggest that TP seems to be a good predictor for algal biomass, estimated by CHL, as shown in the empirical models.

Modifications of nutrient regime, chlorophyll-a, and trophic state relations in Daechung Reservoir after the construction of an upper dam

  • Ingole, Neha P.;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.24-33
    • /
    • 2016
  • Background: Previous numerous studies on watershed scale demonstrated that the constructions of upper dams may influence the below dams due to modifications of flow regime and nutrient inputs. Little is known about how the dam constructions influence the downstream lakes or reservoirs in the regional scale. This study demonstrates how the construction of upper dam (i.e., Yongdam Dam) influences nutrient regime, trophic relations, and empirical models in Daechung Reservoir (DR). Yongdam Dam was constructed at the upstream region of DR in year 2000. Results: The analysis of hydrological variables showed that inflow and discharge in the DR were largely reduced after the year 2000. The construction of upper dam construction also resulted in increases of water temperature, pH and conductivity (as an indicator of ionic content) in the DR. Empirical models of TP-CHL and N:P ratio-CHL suggested that stronger responses of CHL to the phosphorus were evident after the upper dam construction, indicating that algal production at a unit phosphorus increased after the upper dam construction. Mann-Kendall tests on the relations of N:P ratios to TN showed weak or no relations ($t_{au}=-0.143$, z = -0.371, p = 0.7105) before the dam construction, while the relation of N:P ratios to TP showed strong in the periods of before- ($t_{au}=-0714$, z = -2.351, p = 0.0187) and after the construction ($t_{au}=-0.868$, z = -4.270, p = 0.0000). This outcome indicates that TP is key determinant on N:P ratios in the reservoir. Scatter Plots on Trophic State Index Deviations (TSIDs) of "TSI(SD) - TSI(CHL)" against "TSI(TP) - TSI(CHL)" showed that the dominance of clay turbidity or light limitation was evident before the upper dam construction [TSI(TP) - TSI(CHL) > 0 and TSI(SD) - TSI(CHL) > 0] and phosphorus limitation became stronger after the dam construction [(TSI(TP) - TSI(CHL) < 0 and TSI(SD) - TSI(CHL) > 0]. Conclusions: Overall, our analysis suggests that the upper dam construction modified the response of trophic components (phytoplankton) to the nutrients or nutrient ratios through the alteration of flow regime, resulting in modifications of ecological functions and trophic relations in the low trophic levels.

A Comparative Study of Trophic State in Lake Andong, Korea (안동호의 수역별 영양상태와 평가방법간 상관성 비교)

  • Park, Jung-Won;Kim, Dae-Hyun;Shin, Jae-Ki;Lee, Hee-Moo;Park, Jae-Chung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.95-104
    • /
    • 2005
  • Using TSI, TSIm and LTSI, we compared physico-chemical water quality and trophic state of 5 stations in Lake Andong from June 2002 to June 2003 and examined the correlation of them. It is difficult to evaluate trophic state of waters by each parameter, TP, Chl-a and SD, because TSI and TSIm in each section show different results, oligo-, meso- and eutrophic state. But three methods, TSI, TSIm and LTSI, show the same result that trophic degree lows as it goes to a lower area of the lake. The correlation among them is closer in the upper shallow waters than in the lower deep waters. The reciprocal application of trophic state indices is possible because the coefficient of mean correlation ranges 0.9117 to 0.9909. In conclusion, it seems that LTSI reflects a characteristic of water quality in each section better than TSI, TSIm and is very effective to simplify trophic state evaluation and minimize researcher's subjectivity.

The Interpretation Of Chlorophyll a And Transparency In A Lake Using LANDSAT TM Imagery (LANDSAT TM 영상을 이용한 호소의 클로로필 a및 투명도 해석에 관한 연구)

  • 이건희;전형섭;김태근;조기성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.47-56
    • /
    • 1997
  • In this paper, remote sensing is used to estimate trophic state which is primary concern in a lake. In using remote sensing, this study estimated trophic state not with conventional method such as regression equations but with classification methods. As europhication is caused by the extraodinary proliferation of the algae, chlorophyll a and transparency are applied to remote sensing data.. Maximum Likelihood Classification and Minimum Distance Classification which are kinds of classification methods enabled trophic state to be confirmed in a lake. These are obtained as the result of applying remote sensing to classify trophic state in a lake. Firest, when we evaluate tropic state in a large area of water body, the application of remote sensing data can obtain more than 70% accuracies just in using basic classification methods. Second, in the aspect of classification, the accuracy of Minimum Distance Classification is usually better than that of Maximum Likelihood Classification. This result is caused that samples have normal distribution, but their numbers are a few to apply statistical method. Therefore, classification method is required such as artificial neural networks which are not influenced by statistical distribution. Third, this study enables the trophic state of water body to be analyzed and evaluated rapidly, periodically and visibly. Also, this study is good for forming proper countermeasure accompanying with trophic state progress extent in a lake and is useful for basic-data.

Comparative proteomics of the mixotrophic dinoflagellate Prorocentrum micans growing in different trophic modes

  • Shim, Jun-Bo;Klochkova, Tatyana A.;Han, Jong-Won;Kim, Gwang-Hoon;Yoo, Yeong-Du;Jeong, Hae-Jin
    • ALGAE
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • Protein profiles of a common mixotrophic dinoflagellate, Prorocentrum micans, growing autotrophically and mixotrophically (fed on the cryptophyte Rhodomonas salina) were compared using two-dimensional gel electrophoresis (2-DE) to determine if they vary in different trophic modes. Approximately 2.3% of the detected proteins were differentially expressed in the different trophic modes. Twelve proteins observed only in the mixotrophic condition had lower pI value (<5) than the fifteen proteins observed only in the autotrophic condition (>5). When the internal amino acid sequences of five selected proteins differentially expressed between autotrophic and mixotrophic conditions were analyzed using matrix-assisted laser desorption time-of-flight (MALDI-TOF) mass spectrometry, two proteins that were specifically expressed in the autotrophic condition showed homology to glyceraldehyde-3-phosphatase dehydrogenase (GAPDH) and a bacterial catalase. Three mixotrophy-specific proteins showed homology to certain hypothetical proteins from an insect and bacteria. These results suggested the presence of certain gene groups that are switched on and off according to the trophic mode of P. micans.