• Title/Summary/Keyword: trnA

Search Result 118, Processing Time 0.026 seconds

Molecular systematics of Poaceae based on eight chloroplast markers, emphasizing the phylogenetic positions of Korean taxa

  • LEE, Jung-Hoon;KIM, Ki-Joong;KIM, Bo-Yun;KIM, Young-Dong
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • This study was conducted to clarify the phylogenetic position and relationships of Korean Poaceae taxa. A total of 438 taxa including 155 accessions of Korean Poaceae (representing 92% and 72% of Korean Poaceous genera and species, respectively) were employed for phylogeny reconstruction. Sequence data of eight chloroplast DNA markers were used for molecular phylogenetic analyses. The resulted phylogeny was mostly concordant with previous phylogenetic hypotheses, especially in terms of subfamilial and tribal relationships. Several taxa-specific indels were detected in the molecular phylogeny, including a 45 bp deletion in rps3 (PACMAD [Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, Danthonioideae] clade), a 15 bp deletion in ndhF (Oryzeae + Phyllorachideae), a 6 bp deletion in trnLF (Poeae s.l.), and two (17 bp and 378 bp) deletions in atpF-H (Pooideae). The Korean Poaceae members were classified into 23 tribes, representing eight subfamilies. The subfamilial and tribal classifications of the Korean taxa were generally congruent with a recently published system, whereas some subtribes and genera were found to be non-monophyletic. The taxa included in the PACMAD clade (especially Andropogoneae) showed very weak and uncertain phylogenetic relationships, presumably to be due to evolutionary radiation and polyploidization. The reconstructed phylogeny can be utilized to update the taxonomic positions of the newly examined grass accessions.

Phylogenetic analysis of Viburnum (Adoxaceae) in Korea using DNA sequences

  • CHOI, Yun Gyeong;YOUM, Jung Won;LIM, Chae Eun;OH, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.3
    • /
    • pp.206-217
    • /
    • 2018
  • The nucleotide sequences of the chloroplast rbcL, matK, and psbA-trnH and nuclear internal transcribed spacer (ITS) regions were determined from all species of Viburnum in Korea with multiple accessions to reconstruct the phylogeny and to evaluate the utility of the DNA sequences as DNA barcodes. The results of phylogenetic analyses of the cpDNA and ITS data are consistent with the findings of previous studies of Viburnum. Four morphologically closely related species, V. dilatatum, V. erosum, V. japonicum, and V. wrightii, were included in a strongly supported sister clade of V. koreanum and V. opulus. Viburnum odoratissimum is suggested to be sister to the V. dilatatum/V. koreanum clade in the cpDNA data, while V. odoratissimum is a sister to V. furcatum in the ITS data. Viburnum burejaeticum and V. carlesii are strongly supported as monophyletic. Our analyses of DNA barcode regions from multiple accessions of the species of Viburnum in Korea confirm that six out of ten species in Korea can be discriminated at the species level. The V. dilatatum complex can be separated from the remaining species according to molecular data, but the resolution power to differentiate a species within the complex is weak. This study suggests that regional DNA barcodes are useful for molecular species identification in the case of Viburnum when flowering or fruiting materials are not available.

Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1-/- Mice

  • Lim, Soo-Yeon;Mah, Won
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2-3 months old) and juvenile (4 weeks old) $Git1^{\check{s}/\check{s}}$ mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in $Git1^{\check{s}/\check{s}}$ mice.

Three ORF-Containing Group I Introns in Chloroplast SSU of Caulerpa sertularioides (Ulvophyceae) and Their Evolutionary Implications

  • Lee, Jung-Ho;Manhart, James R.
    • ALGAE
    • /
    • v.18 no.3
    • /
    • pp.183-190
    • /
    • 2003
  • Except for a group I intron in trnL-uaa occuring in eubacteria and plastids, group I introns are rarely documented in plastid genomes. Here, we report that a green alga, Caulerpa sertularioides, contains three group IA3 introns in the 16S gene (cpSSU), CS-cpSSU.i1, CS-cpSSU.i2 and CS-cpSSU.i3. Each intron has an open reading frame with LAGLIDADG motifs. CS-cpSSU.i1orf and CS-cpSSU.i3orf occur at Loop 6 in the intron secondary structure and CScpSSU. i2orf at Loop 8. CS-cpSSU.i1orf and CS-cpSSU.i2orf contain both LAGLI-DADG motifs but CS-cpSSU.i3orf has only one. CS-cpSSU.i1 and CS-cpSSU.i2 share the insetion sites and the ORFs at Loop 6 and 8 with CpSSU·1 and CpSSU·2 introns of Chlamydomonas pallidostigmatica (Chlorophyceae). In contrast, CS-cpSSU.i3, containing 28 copies of GAAATAT at Loop 6, is a novel intron found only in Caulerpa sertularioides. Possible scenarios of the evolution of the three introns and their possible use in systematic research are discussed.

Analysis of Database Referenced Navigation by the Combination of Heterogeneous Geophysical Data and Algorithms

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.373-382
    • /
    • 2016
  • In this study, an EKF (Extended Kalman Filter) based database reference navigation using both gravity gradient and terrain data was performed to complement the weakness of using only one type of geophysical DB (Database). Furthermore, a new algorithm which combines the EKF and profile matching was developed to improve the stability and accuracy of the positioning. On the basis of simulations, it was found that the overall navigation performance was improved by the combination of geophysical DBs except the two trajectories in which the divergence of TRN (Terrain Referenced Navigation) occurred. To solve the divergence problem, the profile matching algorithm using the terrain data is combined with the EKF. The results show that all trajectories generate the stable performance with positioning error ranges between 14m to 23m although not all trajectories positioning accuracy is improved. The average positioning error from the combined algorithm for all nine trajectories is about 18 m. For further study, a development of a switching geophysical DB or algorithm between the EKF and the profile matching to improve the navigation performance is suggested.

Development of Multiplex Polymerase Chain Reaction Assay for Identification of Angelica Species (Multiplex Polymerase Chain Reaction을 이용한 당귀 종 판별)

  • Kim, Yong Sang;Park, Hyeok Joo;Lee, Dong Hee;Kim, Hyun Kyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Background: Angelica gigas, A. sinensis, and A. acutiloba are commercially important in the herbal medicine market, and among them, A. gigas has the highest economic value and price. However, their similar morphological traits are often used for fraud. Despite their importance in herbal medicine, recognition of the differences between Angelica species is currently inadequate. Methods and Results: A multiplex polymerase chain reaction (PCR) method was developed for direct detection and identification of A. gigas, A. sinensis, and A. acutiloba. The gene for the distinction of species was targeted at ITS in the nucleus and trnC-petN gene in chloroplasts. The optimized multiplex PCR in the present study utilized each Angelica species-specific primer pairs. Each primer pair yielded products of 229 base pairs (bp) for A. gigas, 53 bp for A. sinensis, 170 bp for A. acutiloba. Additionally non-specific PCR products were not detected in similar species by species-specific primers. Conclusions: In the present study, a multiplex-PCR assay, successfully assessed the authenticity of Angelica species (A. gigas, A. sinensis, and A. acutiloba). and whole genome amplification (WGA) was performed after DNA extraction to identify, the species in the product. The detection method of raw materials developed in the present study could be applied to herbal medicine and health functional food management.

Genetic Variation and Species Identification of Thai Boesenbergia (Zingiberaceae) Analyzed by Chloroplast DNA Polymorphism

  • Techaprasan, Jiranan;Ngamriabsakul, Chatchai;Klinbunga, Sirawut;Chusacultanachai, Sudsanguan;Jenjittikul, Thaya
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • Genetic variation and molecular phylogeny of 22 taxa representing 14 extant species and 3 unidentified taxa of Boesenbergia in Thailand and four outgroup species (Cornukaempferia aurantiflora, Hedychium biflorum, Kaempferia parviflora, and Scaphochlamys rubescens) were examined by sequencing of 3 chloroplast (cp) DNA regions (matK, psbA-trnH and petA-psbJ). Low interspecific genetic divergence (0.25-1.74%) were observed in these investigated taxa. The 50% majority-rule consensus tree constructed from combined chloroplast DNA sequences allocated Boesenbergia in this study into 3 different groups. Using psbA-1F/psbA-3R primers, an insertion of 491 bp was observed in B. petiolata. Restriction analysis of the amplicon (380-410 bp) from the remaining species with Rsa I further differentiated Boesenbergia to 2 groupings; I (B. basispicata, B. longiflora, B. longipes, B. plicata, B. pulcherrima, B. tenuispicata, B. thorelii, B. xiphostachya, Boesenbergia sp.1 and Boesenbergia sp.3; phylogenetic clade A) that possesses a Rsa I restriction site and II (B. curtisii, B. regalis, B. rotunda and Boesenbergia sp.2; phylogenetic clade B and B. siamensis; phylogenetic clade C) that lacks a restriction site of Rsa I. Single nucleotide polymorphism (SNP) and indels found can be unambiguously applied to authenticate specie-origin of all investigated samples and revealed that Boesenbergia sp.1, Boesenbergia sp.2 and B. pulcherrima (Mahidol University, Kanchanaburi), B. cf. pulcherrima1 (Prachuap Khiri Khan) and B. cf. pulcherrima2 (Thong Pha Phum, Kanchanaburi) are B. plicata, B. rotunda and B. pulcherrima, respectively. In addition, molecular data also suggested that Boesenbergia sp.3 should be further differentiated from B. longiflora and regarded as a newly unidentified Boesenbergia species.

Discrimination of Chinese Glycyrrhiza uralensis and Uzbek Glycyrrhiza glabra Using Taste Sensor (미각센서를 이용한 중국산 감초와 우즈베키스탄산 광과감초의 감별)

  • Choi, Go-Ya;Kim, Young-Hwa;Chae, Sung-Wook;Lee, Hye-Won;Ko, Byoung-Seob;Lee, Mi-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • Objectives : Genetic analysis and taste pattern were performed to identify species between Glycyrrhiza uralensis and G. glabra which are officially listed in Korean Pharmacopoeia IX as origin of Gamcho(g$\={a}$nc$\v{a}$o, licorice root, Glycyrrhizae Radix et Rhizoma). Methods : Genetic analysis showed that identification between two species was done by comparing base sequence of ITS(intergenic transcribed spacer) and trnH-psbA regions from eleven Gamchoes sold in market. There was different taste pattern using by taste sensor in Glycyrrhiza uralensis and G. glabra. Results : Genetic analysis showed that six Gamchoes from China were identified as Glycyrrhiza uralensis and five Gamchoes from Uzbekistan were G. glabra. From the results of taste pattern, sourness and astringency of Glycyrrhiza uralensis from China were significantly higher than G. glabra from Uzbekistan, and aftertaste of astringency, aftertaste of umami, and saltiness of Glycyrrhiza uralensis were signicantly low as compared to G. glabra. There is no significant difference between two species in terms of bitterness, aftertaste of bitterness, and umami. Conclusions : Taken together, Glycyrrhiza uralensis from China and G. glabra from Uzbekistan were identified by taste sensor, and this technic could be applied to establishment of taste pattern marker for identification of different species located in various regions.

A phylogenetic analysis of the genus Pilea (Urticaceae) using nrDNA and cpDNA sequences (한국산 물통이속(Pilea) 식물의 nrDNA, cpDNA를 통한 계통분석)

  • Moon, Ae-Ra;Park, Jeong-Mi;Jang, Chang-Gee
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.2
    • /
    • pp.158-168
    • /
    • 2015
  • A study of the genus Pilea in Korea including five taxa was carried out using molecular phylogenetic methods. The majority of members of the genus Pilea in Korea are annual herbs, and they live in moist habitats, flowering in summer and fruiting in autumn. The results of a phylogenetic analysis using nrDNA and cpDNA supported the recognition of P. japonica, P. peploides, and P. taquetii. Pilea taquetii from Mt. Sanbangsan in Jeju was nested within P. hamaoi and P. mongolica clade instead of the P. taquetii clade, with P. taquetii from Mt. Jirisan also separated from the P. taquetii clade. This indicates that the separation is not geographical isolation, but is instead related to taxonomic problems. Therefore, further study of the P. taquetii group is necessary.

Widespread Occurrence of Small Inversions in the Chloroplast Genomes of Land Plants

  • Kim, Ki-Joong;Lee, Hae-Lim
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.104-113
    • /
    • 2005
  • Large inversions are well characterized in the chloroplast genomes of land plants. In contrast, reports of small inversions are rare and involve limited plant groups. In this study, we report the widespread occurrence of small inversions ranging from 5 to 50 bp in fully and partially sequenced chloroplast genomes of both monocots and dicots. We found that small inversions were much more common than large inversions. The small inversions were scattered over the chloroplast genome including the IR, SSC, and LSC regions. Several small inversions were uncovered in chloroplast genomes even though they shared the same overall gene order. The majority of these small inversions were located within 100 bp downstream of the 3' ends of genes. All had inverted repeat sequences, ranging from 11 to 24 bp, at their ends. Such small inversions form stem-loop hairpin structures that usually have the function of stabilizing the corresponding mRNA molecules. Intra-molecular recombination between the inverted sequences in the stem-forming regions are responsible for generating flip-flop orientations of the loops. The presence of two different orientations of the stem-loop in the trnL-F noncoding region of a single species of Jasminum elegans suggests that a short inversion can be generated within a short period of time. Small inversions of non-coding sequences may influence sequence alignment and character interpretation in phylogeny reconstructions, as shown in nine species of Jasminum. Many small inversions may have been generated by parallel or back mutation events during chloroplast genome evolution. Our data indicate that caution is needed when using chloroplast non-coding sequences for phylogenetic analysis.