• Title/Summary/Keyword: triterpene biosynthesis

Search Result 22, Processing Time 0.025 seconds

Isolation and Characterization of Terpene Synthase Gene from Panax ginseng

  • Kim, Yu-Jin;Ham, Ah-Rom;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Dae-Young;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.114-119
    • /
    • 2008
  • Terpene synthase plays a key role in biosynthesis of triterpene saponins (ginsenosides) and is intermediate in the biosynthesis of a number of secondary metabolites. A terpene synthase (PgTPS) cDNA was isolated and characterized from the root of Panax ginseng c.A. Meyer. The deduced amino acid sequence of PgTPS showed a similarity with A. deliciosa (AAX16121) 61%, V. vinifera (AAS66357) 61%, L. hirsutum (AAG41891) 55%, M. truncatula (AAV36464) 52%. And the segment of a terpene synthase gene was amplified by reverse transcriptase-polymerase chain reaction (RTPCR). We studied expression of terpene synthase under stressful conditions like chilling, salt, UV, and heavy metal stress treatment. Expression of PgTPS was increased gradually after exposure to stresses such as chilling, salt, and UV illumination. But its transcription seems to be reduced by cadmium and copper treatment.

Analysis of Squalene Synthase Expression During the Development of Ganoderma lucidum

  • Zhao, M.W.;Zhong, J.Y.;Liang, W.Q.;Wang, N.;Chen, M.J.;Zhang, D.B.;Pan, Y.J.;Jong.S.C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.116-120
    • /
    • 2004
  • The medicinal properties of Ganoderma lucidum have been recognized in China for many centuries. Active pharmaceutical components include triterpenes. To elucidate the molecular regulation of triterpene biosynthesis in this mushroom, a 57-base pair DNA fragment encoding the fourth conserved domain SQ-4 (SMGLFLQKTNIIRDYNEDL) of squalene synthase was synthesized and cloned into the expression vector pET-32a(+). The recombinant fusion protein induced by IPTG (isopropyl-$\beta$-D-thiogalactopyranoside) was overexpressed in the Escherichia coli. Using the purified recombinant fusion protein of 20.9 kDa, a specific polyclonal antibody was obtained from immunized rabbit. Expression of squalene synthase at different development stages of Ganoderma lucidum was analyzed.

Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis

  • Hyunjin, Koo;Yun Sun, Lee;Van Binh, Nguyen;Vo Ngoc Linh, Giang;Hyun Jo, Koo;Hyun-Seung, Park;Padmanaban, Mohanan;Young Hun, Song;Byeol, Ryu;Kyo Bin, Kang;Sang Hyun, Sung;Tae-Jin, Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives

  • Ghimire, Gopal Prasad;Nguyen, Huy Thuan;Koirala, Niranjan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.441-451
    • /
    • 2016
  • Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent. As a result, with the exception of traditional methods of the isolation of squalene from animals (shark liver oil) and plants, biotechnological methods using microorganisms as producers have afforded increased yield and productivity, but a reduction in progress. In this paper, we first review the biosynthetic routes of squalene and its typical derivatives, particularly the squalene synthase route. Second, typical biotechnological methods for the enhanced production of squalene using microbial cell factories are summarized and classified. Finally, the outline and discussion of the novel trend in the production of squalene with several updated events to 2015 are presented.

Overexpression of PgSQS1 Increases Ginsenoside Production and Negatively Affects Ginseng Growth Rate in Panax ginseng

  • Shim, Ju-Sun;Lee, Ok-Ran;Kim, Yu-Jin;Lee, Jung-Hye;Kim, Ju-Han;Jung, Dae-Young;In, Jun-Gyo;Lee, Beom-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • The medicinal plant Panax ginseng (P. ginseng) contains various phytosterols and bioactive triterpene saponins (ginsenosides). Squalene synthase catalyzes the first committed step in ginsenoside biosynthesis. Transgenic plants of P. ginseng were generated by introducing the squalene synthase gene derived from P. ginseng. Adventitious roots of the transgenic ginseng grew best in B5 medium, and 2 g of inoculum secured an optimal growth rate. Two phytohormones, indolebutyric acid and 1-naphtalene acetic acid, increased root growth and decreased ginsenoside production. Treatment with two selected elicitors, chitosan and jasmonic acid, and a precursor of the isoprenoid pathway, mevalonic acid, enhanced ginsenoside production and retarded ginseng growth rate.

Analysis of Influence of Environmental Conditions on Ganoderic Acid Content: in Ganoderma lucidum Using Orthogonal Design

  • Li Na;Liu Xiao Hua;Zhou Jie;Li Yu Xiang;Zhao Ming Wen
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1940-1946
    • /
    • 2006
  • The influence of environmental conditions on the ganoderic acid (GA) content in the fungus Ganoderma lucidum was investigated using a one-factor-at-a-time design and orthogonal design. Among the various medium components examined, sucrose, soybean powder or peptone, ferrous sulfate, and pH 6.0 were the most suitable carbon source (factor A), nitrogen source (factor B), mineral source (factor C), and initial pH (factor D), respectively, for the GA content in the one-factor-at-a-time design. According to the orthogonal design, the order of effect for the four factors on the GA content was A>C>D>B. The best level of factor A was $A_2$ (sucrose) with a value of +0.34 mg/100 mg DW. The optimal treatment combination was $A_2B_1C_3D_1$ with which the GA content reached up to 2.63$\pm$0.011 mg/100 mg DW. The interactions between the mineral ion and the nitrogen source, and the mineral ion and the pH were both highly significant (P<0.01). The highest interaction effect was ($B_2{\times}D_2$) with a value of +0.19 mg/100 mg DW, which was higher than the level effect value for $B_2$ (peptone) and D$_2$ (pH 5.0). Therefore, the results proved that interactions between factors cannot be ignored. The results also indicated the importance of the interactions between the factors, which may help to understand the metabolic pathway leading to triterpene biosynthesis and the expression and regulation of the key enzymes involved.

Molecular Cloning and Characterization of Wound-inducible Beta-amyrin Synthase from Soybean (콩으로부터 상처 유도 beta-amyrin synthase 유전자의 동정 및 발현분석)

  • Park, Seong-Whan;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • Suppression subtractive hybridization (SSH) was used to isolate wound-induced cDNAs from wounded soybean. One of wound-induced cDNA, gmwi33 showed high homology with genes encoding $\beta$-amyrin synthase. The full length cDNA of gmwi33, designated GmAMS1, is 2416 bp long and contains an open reading frame consisted of 739 amino acids. GmAMS1 protein showed 89% identity with licorice GgbAS1 and 86% identity with pea OSCPSY. In 5 day-old, dark-grown seedlings, the expression of GmAMS1 was most strongly induced by light and weakly induced by methyl jasmonate and by low temperature. However, GmAMS1 was not induced by elicitor or UV-B treatment. Such expression pattern might be closely related with the oxygen-radical scavenging activity of soyasaponin.

Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer

  • Kim, Yu-Jin;Jeon, Ji-Na;Jang, Moon-Gi;Oh, Ji Yeon;Kwon, Woo-Saeng;Jung, Seok-Kyu;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Panax ginseng is one of the most important medicinal plants in Asia. Triterpene saponins, known as ginsenosides, are the major pharmacological compounds in P. ginseng. The present study was conducted to evaluate the changes in ginsenoside composition according to the foliation stage of P. ginseng cultured in a hydroponic system. Among the three tested growth stages (closed, intermediate, and opened), the highest amount of total ginsenoside in the main and fine roots was in the intermediate stage. In the leaves, the highest amount of total ginsenoside was in the opened stage. The total ginsenoside content of the ginseng leaf was markedly increased in the transition from the closed to intermediate stage, and increased more slowly from the intermediate to opened leaf stage, suggesting active biosynthesis of ginsenosides in the leaf. Conversely, the total ginsenoside content of the main and fine roots decreased from the intermediate to opened leaf stage. This suggests movement of ginsenosides during foliation from the root to the leaf, or vice versa. The difference in the composition of ginsenosides between the leaf and root in each stage of foliation suggests that the ginsenoside profile is affected by foliation stage, and this profile differs in each organ of the plant. These results suggest that protopanaxadiol- and protopanaxatriol(PPT)-type ginsenosides are produced according to growth stage to meet different needs in the growth and defense of ginseng. The higher content of PPT-type ginsenosides in leaves could be related to the positive correlation between light and PPT-type ginsenosides.

Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng

  • Choi, Han Suk;Koo, Hyo Bin;Jeon, Sung Won;Han, Jung Yeon;Kim, Joung Sug;Jun, Kyong Mi;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.505-514
    • /
    • 2022
  • Background: The roots of Panax ginseng contain two types of tetracyclic triterpenoid saponins, namely, protopanaxadiol (PPD)-type saponins and protopanaxatiol (PPT)-type saponins. In P. ginseng, the protopanaxadiol 6-hydroxylase (PPT synthase) enzyme catalyses protopanaxatriol (PPT) production from protopanaxadiol (PPD). In this study, we constructed homozygous mutant lines of ginseng by CRISPR/Cas9-mediated mutagenesis of the PPT synthase gene and obtained the mutant ginseng root lines having complete depletion of the PPT-type ginsenosides. Methods: Two sgRNAs (single guide RNAs) were designed for target mutations in the exon sequences of the two PPT synthase genes (both PPTa and PPTg sequences) with the CRISPR/Cas9 system. Transgenic ginseng roots were generated through Agrobacterium-mediated transformation. The mutant lines were screened by ginsenoside analysis and DNA sequencing. Result: Ginsenoside analysis revealed the complete depletion of PPT-type ginsenosides in three putative mutant lines (Cr4, Cr7, and Cr14). The reduction of PPT-type ginsenosides in mutant lines led to increased accumulation of PPD-type ginsenosides. The gene editing in the selected mutant lines was confirmed by targeted deep sequencing. Conclusion: We have established the genome editing protocol by CRISPR/Cas9 system in P. ginseng and demonstrated the mutated roots producing only PPD-type ginsenosides by depleting PPT-type ginsenosides. Because the pharmacological activity of PPD-group ginsenosides is significantly different from that of PPT-group ginsenosides, the new type of ginseng mutant producing only PPD-group ginsenosides may have new pharmacological characteristics compared to wild-type ginseng. This is the first report to generate target-induced mutations for the modification of saponin biosynthesis in Panax species using CRISPR-Cas9 system.

The Effect of Haliotidis Concha on the Growth and Ginsenoside Biosynthesis of Korean Ginseng Hairy Root (인삼 모상근의 생장과 Ginsenoside 생합성에 미치는 석결명의 영향)

  • Jeong, Dae-Young;Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Seok-Kyu;Kim, Se-Young;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.206-211
    • /
    • 2009
  • In order to investigate the effects of elicitors on the growth and ginsenoside biosynthesis of ginseng hairy roots, we treated Panax ginseng hairy root with various concentrations of Haliotidis concha according to different time course. Haliotidis concha supplement increased the biomass and ginsenoside accumulation at 10 mg/L concentration. The growth rate of hairy root under a lighter concentration was greater than hairy root treated with a denser concentration. The highest content and productivity of ginsenosides appeared at 2 weeks after the treatment of 10 mg/L Haliotidis concha. The gene expression of squalene synthase, squalene epoxidase, dammarenediol synthase, cycloartenol synthase, $\beta$-amyrin synthase in hairy roots of ginseng were examined by RT-PCR. The Haliotidis concha treatment resulted in the obvious accumulation of the mRNA of triterpene biosynthesis in Panax ginseng hairy root as compared with the control. In this study, Haliotidis concha acts as a kind of elicitor for the production of ginsenosides.