• 제목/요약/키워드: trip attraction model

검색결과 18건 처리시간 0.028초

균형 통행분포모형연구 (Equilibrium trip distribution model)

  • 임용택
    • 대한교통학회지
    • /
    • 제28권6호
    • /
    • pp.159-166
    • /
    • 2010
  • 통행분포(trip distribution)에서는 첫 단계인 통행발생(trip generation)에서 구해진 통행 유출량(trip production)과 통행 유입량(trip attraction)을 연결시키는 작업이 행해진다. 즉 하나의 존에서 유출되는 통행량을 다른 존에 분포시키는 과정이라 할 수 있다. 그런데, 통행분포모형에 사용되는 통행시간이나 비용 등의 통행저항들이 통행수요가 변함에 따라 함께 변함에도 불구하고 현재 사용하고 있는 중력모형에서는 이를 고려하지 못하는 한계를 갖고 있다. 즉, 목적지까지의 통행비용이 커지면 통행수요는 줄어들며, 반대로 통행비용이 적으면 통행수요가 커지는 것과 같은 관계가 존재하게 된다. 이런 측면에서 본 연구는 통행분포시 목적지간에 균형(equilibrium condition of trip distribution)이 존재함을 증명한다. 이를 위하여 대표적인 통행분포모형인 중력모형을 이용하여 통행분포시 균형조건을 유도하며, 이런 균형조건을 만족시키는 통행분포를 구하는 방법론을 제시한다. 또한, 본 연구에서 제시된 모형은 간단한 예제를 통하여 평가하며, 통행분포시 균형상태의 해가 도출됨을 확인한다.

부산시장래교통량의 추계수법에 관한 실증적 연구 (Actual Research on the Estimation Technique of the Future Trip in Pusan City.)

  • 오윤표
    • 대한교통학회지
    • /
    • 제5권2호
    • /
    • pp.97-112
    • /
    • 1987
  • The objective of this study is to construct not only trip production and attraction in Pusan but also to study and examine appropriateness of the model positively. Depending on the estimation models of trip production and attraction of each zone that have been constructed in this study, it has been proved that the formula of multiple regression by the explanation variables like the indices of total employees, total students, floor spaces of residentials and floor spaces of educational and cultural areas within the study areas have very high explanatory capacity and appropriateness. It si considered that a study of method on new division, integration or omission etc. of the existing zones preceeding for reduction of calculation quantity and a study of estimation error have to be done for future study, if these models are used actually.

  • PDF

통행분포패턴에 기초한 장래 O-D표 수렴계산방법 개발 (Development of a Trip Distribution Model by Iterative Method Based on Target Year's O-D Matrix)

  • 유영근
    • 대한교통학회지
    • /
    • 제23권2호
    • /
    • pp.143-150
    • /
    • 2005
  • 통행분포의 예측과정에서 장래 O-D표는 행의 합 및 열의 합이 통행발생 예측단계에서 예측된 존의 유출 통행량 및 유입 통행량에 근접해야 한다는 제약조건을 만족시키기 위하여 수렴계산을 하게 된다. 기존 수렴계산 방법들은 통행분포 예측모형에 의해 예측된 존간 통행분포량이 수렴계산과정에서 상당히 달라질 수 있고, 그 결과로, 예측된 존간 통행분포패터의 변형을 가져올 수 있다. 본 논문에서는 이와 같은 문제점을 해결하고자, 새로운 수렴계산방법을 개발하였다. 기존 수렴계산 방법들이 O-D표의 행의 합과 유출 통행량, 그리고 열의 합과 유입통행량을 근접시키기 위하여 비율로써 행과 열을 순차적으로 반복하면서 수렴계산을 행하는 것과 달리, 개발된 방법은 총 통행량을 기준으로 유출통행량, 유입통행량과의 차를 가중평균으로써 최소화시키는 수렴계산 특성을 갖는다. 개발된 수렴계산 방법을 38개 존의 실제 O-D표를 이용하여 현재까지 가장 많이 사용되어온 프레타법 및 퍼니스법과 비교, 검증하였으며, 검증결과 개발된 방법은 제약조건을 충족시킴과 동시에 통행분포 예측모형으로부터 예측된 존간 통행분포량과의 차가 다른 방법에 비해 최소화 되어 유용한 거승로 증명되었다.

Zone특성 분할을 통한 유형별 통행발생 모형개발 (Development of Trip Generation Type Models toward Traffic Zone Characteristics)

  • 김태호;노정현;김영일;오영택
    • 한국도로학회논문집
    • /
    • 제12권4호
    • /
    • pp.93-100
    • /
    • 2010
  • 통행발생은 4단계 모형의 처음 단계로 전체수요예측에 상당한 영향을 미치게 되므로 정확성이 무엇보다 필요한 단계라 할 수 있다. 현재 통행발생모형으로 도시교통 및 SOC시설 등의 계획에 널리 사용되고 있는 것은 선형회귀모형이며, 각종 사회경제지표와 통행발생량의 관계가 선형임을 전제로 한다. 하지만 급격한 도시개발이나 도시계획구조가 변경되었을 때 통행량을 추정하기 위한 사회경제지표 자료가 부족하여 추정된 통행량의 오차가 많을 수 있다. 이에 본 연구는 일반적으로 널리 사용되는 사회경제지표를 선형이란 가정을 하지 않고, 다양한 존의 특성을 반영할 수 있는 변수에 대한 시장분할을 토대로 새로운 유형별 통행발생모형을 개발하고자 한다. 본 연구에서는 교통수요예측의 처음 단계인 통행발생 모형의 예측력을 개선하기 위하여 존의 다양한 특성(토지이용, 사회경제적 등)을 고려하였다. 예측력 개선을 위한 시장분할 방법론으로는 통행 발생률을 기반으로 한 Data Mining(CART)방법과 회귀분석을 이용하였다. 연구의 결과를 살펴보면, 첫째, CART분석을 활용한 존 특성 분석결과, 유출통행은 사회경제적 요인(남녀상대비중, 연령대(22~29세))에 영향을 받고 있으며, 유입통행은 토지이용 요인(업무시설상대비중), 사회경제적 요인(3차 종사자상대비중)으로 나타났다. 둘째, 유형별 모형개발 결과 통행발생 계수 값은 유출의 경우 0.977~0.987(통행/인)이며, 유입의 경우 0.692~3.256(통행/인)로 나타나 유형구분이 필요한 것으로 나타났다. 셋째, 실측검증을 수행하였으며, 유출 및 유입의 경우 기존 모형보다 적합도가 높아진 것을 알 수 있다. 따라서 본 연구에서 개발한 유형별 통행발생모형이 기존 연구보다 우수한 것을 알 수 있었다.

도시기반시설과 고령자 통행의 상관관계 분석: 행정동 단위 대중교통 통행유입 모형을 중심으로 (Relationships Between Urban Infrastructure and Travel by the Elderly: Based on the Public Transit Trip Attraction Model for Dong)

  • 이숭봉;정동재;장수은
    • 대한교통학회지
    • /
    • 제33권3호
    • /
    • pp.268-275
    • /
    • 2015
  • 우리사회가 초고령 사회로 빠르게 진입하면서 고령자를 고려한 교통정책에 대한 관심이 증가하고 있다. 그동안 고령자 통행에 관한 상당한 연구가 수행되었으나, 고령자 통행의 시공간적 특성을 체계적으로 분석한 연구는 많지 않았다. 이에 본 연구는 대중교통 통행유입 모형을 바탕으로, 고령자 통행의 시간적 특성은 시간대별 모형으로, 공간적 특성은 도시기반시설 자료를 독립변수에 포함하여 설명하고자 하였다. 분석결과, 고령자 통행에 주로 영향을 미치는 도시기반시설은 대중교통시설과 상업면적, 병원수로 나타났으며, 특히 09시-17시 사이에 영향이 큰 것으로 파악되었다.

A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium

  • Sung, Ki-Seok;Rakha, Hesham
    • Management Science and Financial Engineering
    • /
    • 제15권1호
    • /
    • pp.51-69
    • /
    • 2009
  • A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.

통행분포/수단선택 통합모형 및 민감도분석 (Integrated Trip Distribution/Mode Choice Model and Sensitivity Analysis)

  • 임용택
    • 대한교통학회지
    • /
    • 제29권2호
    • /
    • pp.81-89
    • /
    • 2011
  • 통행분포(trip distribution)는 4단계 통행수요추정의 첫 단계인 통행발생(trip generation)에서 구해진 통행생성(trip production)과 통행 유인(trip attraction)을 연결시키는 작업이다. 즉 하나의 존에서 생성 또는 유인되는 통행량을 다른 존에 분포시키는 과정이다. 이에 반해, 통행수단선택(transport mode choice)은 통행자들이 어떤 교통수단을 선택할 것인지를 결정하는 단계이다. 그러나, 이들 통행분포단계와 통행수단선택단계는 서로 밀접한 관계가 있음에도 불구하고, 서로 독립적으로 수행되어온 경향이 있었다. 본 연구에서는 통행분포단계와 통행수단선택단계를 통합한 모형을 제시하고 이를 풀기 위한 알고리듬도 제시한다. 통합모형의 통행분포모형으로는 중력모형(gravity model)을 적용되며, 수단선택모형으로는 로짓모형(logit model)을 이용한다. 본 연구의 통합모형은 각 단계별로 개별적으로 진행되는 추정단계가 하나의 모형 틀 안에서 통합적으로 이루어져 좀 더 현실적이며, 통행비용의 불일치 문제가 해소될 수 있다. 또한, 통합모형에서도 균형조건(equilibrium condition)이 존재함을 증명하며, 통합모형의 민감도 분석을 통하여 기존 모형과의 차이점을 설명한다.

중력모형에서 존내 분포통행 예측방법에 관한 연구 (A Study on Inner Zone Trip Estimation Method in Gravity Model)

  • 유영근
    • 대한토목학회논문집
    • /
    • 제26권5D호
    • /
    • pp.763-769
    • /
    • 2006
  • 중력모형은 출발 존의 유출통행량과 도착존의 유입통행량, 그리고 출발존 중심에서 도착존 중심까지의 교통저항을 이용하여 장래 분포통행을 예측한다. 중력모형에서 존내통행 예측의 경우 교통저항이 "0"로 산정되기 때문에 중력모형에 의해 예측하지 못하고 성장율법과 같은 타 방법에 의해 예측을 행해야 하는 어려움이 존재했다. 본 연구에서는 중력모형에 의한 분포통행 예측시 구축된 중력모형을 이용하여 존내 분포통행을 예측하는 방법을 제안하였는데, 제안한 방법은 기준연도의 존내 분포통행량과 유출, 유입통행량을 존간통행에서 구축된 중력모형식에 대입하여 존내 교통저항을 산출하고 이를 다시 중력 모형에 대입하여 장래 존내 분포통행 예측을 행하는 것이다. 1988년 O-D표를 기준연도 O-D로 하고, 본 연구에서 제안한 방법과 기존의 방법인 성장률법과 회귀모형법의 1992년과 2004년 예측결과들을 실제 O-D와 $x^2$, RMSE, 상관계수 등으로 비교 분석해 본 결과, 본 연구에서 제안한 방법이 우수한 결과를 나타내었다.

사용자 평형을 이루는 통행분포와 통행배정을 위한 유전알고리즘 (A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium)

  • Sung, Ki-Seok
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.599-617
    • /
    • 2006
  • 혼잡한 교통네트워크에서 조사된 통행량으로부터 확률적 사용자 평형을 이루는 통행분포와 통행배정을 동시에 구하기 위한 네트워크 모델과 유전알고리즘을 제안하였다. 확률적 사용자 평형을 이루는 모델은 선형제약을 가진 비선형 목적함수를 최소화하는 문제로 정식화하였다. 네트워크 모델에서는 해의 탐색공간을 줄이고 조사된 통행량을 만족시키기 위해서 흐름보존제약을 활용하였다. 목적함수는 흐름보존, 통행발생량, 통행유입량, 조사통행량 등의 제약을 만족하는 링크통행량과, 경로통행배정을 통하여 구한, 확률적 사용자 평형을 이루는 경로통행량을 만족하는 링크통행량의 차이를 최소화하는 것으로 정식화하였다. 제안된 유전알고리즘에서 유전자는 통행분포, 링크통행량, 여행비용계수 등을 나타내는 벡터로 정의하였다. 각 유전자는 목적함수의 값으로 구한 적합도에 따라 평가되며, 병행단체교차와 돌연변이에 의하여 진화한다.

  • PDF

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF