• 제목/요약/키워드: trimethylbenzene

검색결과 33건 처리시간 0.017초

도장처리에 따른 소나무 판재의 휘발성유기화합물 방출특성 변화 (Changes of VOCs Emission on Pine (Pinus Rigida) Board by Finishing with Different Coating Types)

  • 박상범;이민;이상민;강영석
    • 한국가구학회지
    • /
    • 제26권2호
    • /
    • pp.122-129
    • /
    • 2015
  • In previous study, VOC emission characteristics of coating materials for wood finishing were conducted and results showed that eco-friendly products has about 15~46% lower TVOC emission than typical products. In this study, lower TVOC emitted coating materials were applied on pine and then changes of VOC emission characteristics from pine with treatments were determined. Non-treated pine emitted $604.7{\mu}g/m^2h$ of TVOC that contained 66% of NVOC ($399.7{\mu}g/m^2h$). However, $V_2$ finished pine showed no NVOC emission rather than AVOC emission that consisted of Toluene, Ethylbenzene, m,p-Xylene, o-Xylene, 1,2,4- Trimethylbenzene. All coating materials inhibited ${\alpha}$-Pinene emission which originally from pine, but waterborne stain ($W_1$ and $W_3$) showed lower disruption of that emission. Moreover, $W_3$/wood showed higher NVOC emission such as ${\alpha}$-Terpinol, Terpinen-4-ol which are known as antioxidant substrates. Based on results, VOC emission characteristic of pine was significantly affected by coating materials with negatively in terms of ${\alpha}$-Pinene emission or positively in terms of NVOC emission. Therefore, coating material is important factor for indoor air quality when it would apply on wood products. For the future study, VOC emission characteristic of coated wood will be conducted continuously.

광주지역 산업단지 대기 중 휘발성유기화합물 분포 특성 및 배출원 추정 (Distribution Characteristics and Source Estimation of Volatile Organic Compounds in the Ambient Air of Industrial Complex in Gwangju)

  • 김민진;박옥현;양윤철;박진환;유지용;정희윤;서광엽;김종민
    • 한국환경과학회지
    • /
    • 제32권6호
    • /
    • pp.403-417
    • /
    • 2023
  • In this study, we investigated the characteristics of Volatile Organic Compounds(VOCs) emission from painting and printing facilities in the Pyeongdong industrial complex in Gwangju. In addition, the objective was to understand the distribution characteristics of VOCs in the ambient air in industrial complexes affected by painting and printing facilities. The painting facility mainly emitted toluene, acetone, butyl acetate, 4-methyl-2-pentanone, ethyl acetate, 1-butanol, methyl ethyl ketone, m,p-xylene, o-xylene, 4-ethyltoluene, ethylbenzene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The main emission components in printing facilities were methyl ketone, ethyl acetate, acetone, 2-propanol, toluene, heptane, and butyl acetate. Ethyl acetate, toluene, 2-butanone, acetone, butyl acetate, 2-propanol, xylenes, and 4-methyl-2-pentanone were detected in the ambient air of the Pyeongdong industrial complex, consistent with the VOCs emitted by painting and printing facilities. The average concentration of seasonal TVOCs followed an order of winter > fall > spring > summer, whereas the concentrations of daytime and nighttime TVOCs were generally higher at night than those during the day, and the wind speed was greater during the day than it was at night. Based on a factor analysis of VOCs in the ambient air of Pyeongdong industrial complex, it is considered that organic solvents used in coating, printing, and electronics manufacturing facilities, as well as diesel vehicle emissions played a major role.

서울시 도로변, 터널 및 주거지역 대기 중 유해 휘발성 유기화합물의 특성 (Characteristics of Hazardous Volatile Organic Compounds (HVOCs) at Roadside, Tunnel and Residential Area in Seoul, Korea)

  • 이제승;최유리;김현수;어수미;김민영
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.558-568
    • /
    • 2011
  • Hazardous volatile organic compounds (HVOCs) have been increasingly getting concern in urban air chemistry due to photochemical smog as well as its toxicity or potential hazards. In this study, we investigated their concentrations and the properties in tunnel, urban roadside and residential area. As a result, among 36HVOCs measured in this study, BTEX (benzene, toluene, ethylbenzene, xylene) and dichlorodifluoromethane, 1,2,4-trimethylbenzene, trichlorofluoromethane were detected above the concentration of $1{\mu}g/m^3$ in every sampling site and the most abundant compound was toluene. The other compounds were detected at trace level or below the detection limit. In addition, we found that three CFCs (chlorofluorocarbons), such as CFC-12, CFC-11, CFC-113, were persistently detected because of the emission in the past. Toluene to benzene ratio (T/B) at tunnel and roadside were calculated to be 4.3~5.3 and at residential area 15.4, suggesting that the residential area had several emission sources other than car exhaust. The ratio of X/E (m,p-xylene to ethylbenzene) ratio was calculated to be 1.8~2.1 at tunnel, 1.7 at roadside and 1.2 at residential area, which means this ratio reflected well the relative photochemical reactivity between these compounds. Good correlation between m,p-xylene and ethylbenzene ($r^2$ > 0.85) were shown in every study sites. This indicated that correlation between $C_2$-alkylbenzenes were not severely affected by 3-way catalytic converter. In this study, it was demonstrated that the concentration of benzene was very low, compared with national air quality standard (annual average of $5{\mu}g/m^3$). Its concentration were $2.52{\mu}g/m^3$ in roadside and $1.34{\mu}g/m^3$ in residential area. We thought this was the result of persistent policy implementation including the reduction of benzene content in gasoline enforced on January 1, 2009.