• Title/Summary/Keyword: tributary area

Search Result 154, Processing Time 0.024 seconds

Effect of infiltration/inflow by rainfall for sewerage facilities in the area with partially separate sewer system (불완전 분류식 하수처리구역의 강우에 의한 하수도시설의 침입수/유입수 영향 분석)

  • Shin, Jungsub;Han, Sangwon;Yook, Junsu;Lee, Chungu;Kang, Seonhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.177-190
    • /
    • 2019
  • The purpose of this study was to analyze the effects of sewerage facilities through I/I analysis by rainfall by selecting areas where storm overflow diverging chamber is remained due to the non-maintenance drainage equipment when the sewerage system was reconstructed as a separate sewer system. Research has shown that wet weather flow(WWF) increased from 106.2% to 154.8% compared to dry weather flow(DWF) in intercepting sewers, and that the WWF increased from 122.4% to 257.6% in comparison to DWF in storm overflow diverging chamber. As a result, owing to storm overflow diverging chamber of partially separate sewer system with untreated tributary of sewage treatment plant, rainfall-derived infiltration/inflow(RDII) has been analyzed 2.7 times higher than the areas without storm overflow diverging chamber. Meanwhile, infiltration quantity of this study area was relatively higher than that of other study areas. Therefore, it is necessary to reduce infiltration quantity through sewer pipe maintenance nearby river. Drainage equipment maintenance should be performed not to operate storm overflow diverging chamber in order to handle the appropriate sewage treatment plant capacity for rainfall because it is also expected that RDII due to rain will occur after maintenance. In conclusion, it is necessary to recognize aRDII(allowance of rainfall-derived infiltration/inflow) and to be reflected it on sewage treatment plant capacity because aRDII can occur even after maintenance to the complete separate sewer system.

Analysis of changes in cross section and flow rate due to vegetation establishment in Naeseong stream (내성천 하도 내 식생활착에 의한 단면 및 유량변화 분석)

  • Lee, Tae Hee;Kim, Su Hong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • In the present study, hydrologic data and topographical data from 2010 to 2019 were collected from three gauging stations placed in the watershed of Naeseong stream to determine changes and rates of changes in rainfall, water level & mean velocity, and water level & discharge, together with changes in rates of erosion and deposition at cross-sections of the river. Besides, effects of regulated and non-regulated rivers according to the presence of artificial regulation of flow rate of the river via artificial structure located at Seo stream (Yeongju si (Wolhogyo) station), the tributary free from construction of dams, were compared and analyzed. Results of analyses conducted in the present study revealed vegetational establishment and landforming due to increasing area of vegetational sandbar evolved in the flood plain (intermediate- or high- water level) by the drought sustained from 2013 to 2015. Continuous erosion of river bed was appeared because of narrowed flow area with low water level and increased velocity and tractive force on river bed.

A Study on the Characteristics of River Sediments and the Rebound Strength of Rock and Sediment in Dong River (동강의 하천 퇴적물의 입자 특성 및 암석의 반발 강도 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2019
  • The grain size characteristics of river sediments and the characteristics of bedrock were investigated for the 24km section of the Dong River upstream of the Han River. The bedrock of the study area is various limestone belonging to the Paleozoic Choseon limestone group, and Mesozoic sandstone and conglomerate occur in some areas. Most of the river channel is made of limestone, and most of the river bottom is covered with fluvial sediments. More than 70% of these sediments are sandstone and conglomerate, rather than limestone which forms the basis of the valley. Sediment particles seem to have been supplied upstream of the study area rather supplied from the slope near of the channel. It is difficult to find the statistically significant difference in the shape of the sediment particles of limestones and non-limestones. However, limestones has platy forms rather than block forms, it can be assumed that the limestone was supplied from the surrounding valley wall and transported over a short distance. The particle sizes of DG1~DG2(the upstream section) are decreasing in the downstream direction. However, at DG3, which is a tributary, Jijangcheon, confluence particle size increases and at DG4 particle size increases more. In the case of DG4, it may be influenced by the influx of tributaries, but it also can be supposed as the impact of the large flood in 2002. In the downstream parts(DG5~DG7), the particle size decreases exponentially with distance. The rebound strength of stream sediments and bedrock was measured by using Schmidt hammer. Limestone showed lower rebound strength than non-limestone. According to the results of the sediment and bedrock, it can be seen that the sandstone and conglomerate with high rebound values pass through valley with the relatively low strength limestone. The sediments of limestone were decreased in grain size more rapidly than those of limestone sediments.

Mitigation Effect of Watershed Land Use due to Riparian Vegetation on Stream Water Quality (수변림으로 인한 유역 토지이용이 하천 수질에 미치는 관계 완화효과 연구)

  • Hyeonil Kwon;Jong-Won Lee;Sang Woo Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.320-329
    • /
    • 2022
  • Urban areas in watersheds increase the impervious surface, and agricultural areas deteriorate the water quality of rivers due to the use of fertilizers. As such, anthropogenic land use affects the type, intensity and quantity of land use and is closely related to the amount of substances and nutrients discharged to nearby streams. Riparian vegetation reduce the concentration of pollutants entering the watershed and mitigate the negative impacts of land use on rivers. This study analyzes the data through correlation analysis and regression analysis through point data measured twice a year in spring and autumn in 21 selected damaged tributary rivers within the Han River area, and then uses a structural equation model to determine the area land use. In the negative impact on water quality, the mitigation effect of riparian vegetation was estimated. As a result of the correlation analysis, the correlation between the agricultural area and water quality was stronger than that of the urban area, and the area ratio of riparian vegetation showed a negative correlation with water quality. As a result of the regression analysis, it was found that agricultural areas had a negative effect on water quality in all models, but the results were not statistically significant in the case of urban areas. As a result of the model estimated through the structural equation, BOD, COD, TN, and TP showed a mitigation effect due to the accumulation effect of river water quality through riparian vegetation in agricultural areas, but the effect of riparian vegetation through riparian vegetation was found in urban areas. There was no These results were interpreted as having a fairly low distribution rate in urban areas, and in the case of the study area, there was no impact due to riparian forests due to the form of scattered and distributed settlements rather than high-density urbanized areas. The results of this study were judged to be unreasonable to generalize by analyzing the rivers where most of the agricultural areas are distributed, and a follow-up to establish a structural equation model by expanding the watershed variables in urban areas and encompassing the variables of various factors affecting water quality research is required.

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Acquisition and Accuracy Assessment of topographic information of inaccessible areas (위성영상을 이용한 비접근지역의 지형정보 획득 및 정확도 평가)

  • 고종식;최윤수;김욱남;이상준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.393-398
    • /
    • 2004
  • It is transformed map data of different coordinate system into unique system and We triedto make topographic map on non-accessible area. We transformed Russian map coordinates(Krassovsky, G-K projection) intoWGS-84, TM projection and assessed accuracy. The RMSE(in East and West bearings : ${\pm}$13.67m, in North and South bearings : ${\pm}$14.67m) using only SCP(Survey Control Point) is more accurate than that(in East and West bearings : ${\pm}$24.26m, in North and South bearings : ${\pm}$25.32m) using SCP, intersection of road, bridge. Exterior orientation parameters are estimated using rigorous modelling and GCPs are classified with SCP, intersection of road, bridge. Rigorous modelling is performed with each classified GCP. The modelling result usingonly SCP(in East and West bearings : ${\pm}$13.53m, in North and South bearings : ${\pm}$14.22m) is more accurate than that using intersection of road(in East and West bearings : ${\pm}$16.l1m, in North and South bearings: ${\pm}$23.85m), bridge(in East and West bearings : ${\pm}$17.21m, in North and South bearings : ${\pm}$21.82m). The results means that SCP is more accurate than intersection of road, bridge because of edit to generate map. therefore, SCP is suitable for object of GCP in paper map(1:50,000). Geographic information on non-accessible area and analysis is performed. The results of stereoscopic plotting is well matched old map data on road, railroad but, many objects are generally editted. It is possible to update on new objects(building, tributary ‥‥etc). Ability of description using SPOT-5(stereo) is more than features and items included in 1:50,000 topographic map. Therefore, it is possible to make large scale map than 1:50,000 topographic map using SPOT-5 imagery. But, there are many problems(accurate GCPs, obtain of high resolution stereoscopic satellite imagery in a period ‥‥ etc) to make topographic map on non-accessible area. It is actually difficult to solve these problems. therefore, it is possible to update 1:50,000 topographic map in part of topographic map generation.

  • PDF

A study on the bedrock erosional forms at Dutayeon, Yanggu (양구 두타연 인근 지역의 기반암 하상지형 연구)

  • KIM, Jong Yeon;KIM, Chang Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.31-49
    • /
    • 2012
  • Satae cheon, a tributary of the Suip cheon in Yanggu, Gangwon province, is an international river extended to North Korea. Most of drainage basin area of the river was the fierce battle field during the Korean War(1950-1953) and hard to access as it located between the MDL(Military Demarcation Line) and the CCZ(Civilian Control Zone: about 10km south from MDL). By the restriction of access to the sites, most of natural landscape have been well conserved except limited use for military activities. Even the landfoms in that area were not studied, except the government's heritage reports. Satae Cheon's channel follows the Imdang fault line(N-S) to Satae-ri and flow to west to the Dutayeon area. The river meanders along geological structure or weak line at the Dutayeon area. The meandering channel was shorten by the meander cut which linked the thalweg line of meander loop ant the meander neck. As a result of this cut, the river cliff formed by the Satae cheon became the part of newly formed channel bed and the S-forms are formed. After the channel route stabilized, channel incised the rock with large potholes and undulating walls were formed. The channel width changes from 1m to 10m with restriction of the undulating walls, so this part can be regarded as inner channel or inner gorge. From the point of planar forms it also can be slot-type canyon.

Estimation of Pollution Sources of Oenam Watershed in Juam Lake using Nitrogen Concentration and Isotope Analysis (주암호 외남천 유역 하천수의 질소농도와 동위원소비 분석을 이용한 오염원 평가)

  • Choi, Yujin;Jung, Jaewoon;Choi, Woojung;Yoon, Kwangsik;Choi, Dongho;Lim, Sangsun;Jeong, Juhong;Lim, Byungjin;Chang, Namik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.467-474
    • /
    • 2011
  • In an effort to investigate water pollution characteristics of Juam lake, water samples were collected from three sites (Sites A, B, and C) of Oenam stream which is a typical tributary of rural watershed in the lake and analyzed for N concentration and the corresponding isotope ratio (${\delta}^{15}N$) of ${NO_3}^-$. Concentrations of ${NO_3}^-$ were not dramatically different among the sites; $0.8{\pm}0.2mgNL^{-1}$ (range: $0.0{\sim}4.3mgNL^{-1}$) for Site A, $1.1{\pm}0.2mgNL^{-1}$ ($0.0{\sim}4.3mgNL^{-1}$) for Site B, and $1.1{\pm}0.1mgNL^{-1}$ ($0.1{\sim}2.6mgNL^{-1}$) for Site C. Meanwhile, ${\delta}^{15}N$ tended to decrease with river flow; it was highest for Site A ($45.5{\pm}5.3$‰) followed by Site B ($19.7{\pm}2.0$‰) and Site C ($8.7{\pm}1.5$‰). Such high ${\delta}^{15}N$ values of ${NO_3}^-$ in Site A suggested that ${NO_3}^-$ derived from livestock feedlot (specifically livestock excrete of which ${\delta}^{15}N$ is higher than 10‰) is the predominant pollution sources despite mountainous area occupied the most of land-use in the watershed. Using the two-sources isotope mixing model, it was estimated that the contribution of cropping activities (i.e. fertilization) became greater in down-stream area (Sites B and C) due to the higher agricultural land-use than the up-stream area (Site A). Particularly, during the active cropping season, the low contribution of organic pollution sources indicated that domestic sewage was not the predominant pollution source. Therefore, it was suggested that agricultural sources such as livestock farming and cropping rather than mountainous and residential are the dominant sources of water pollution in the study area. These results could be effectively utilized in elucidating water pollution sources in rural areas and selecting water management practices.

Numerical Study on Vertical Stress Estimation for Panel Pillars at Room and Pillar Mines (주방식 광산의 패널 광주 수직응력 추정을 위한 수치해석 연구)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.473-483
    • /
    • 2020
  • This paper examines the vertical stress change concentrated on mine pillar which occurs due to the stress disturbance from opening excavation at room and pillar mine by FLAC3D, a finite difference method (FDM) software. The mesh size combination is decided with a careful consideration of relative error and run-time, then its performance is verified. A series of numerical analyses is conducted and the vertical stress at central pillar was observed for the test cases of 1×1 to 11×11 mine pillars, 40 m to 320 m depth with 40 m difference. The results show that the vertical stress of pillar approaches to the similar value with the value estimated by tributary area theory(TAT) when the development area (NP) is increased or the height of overburden (HOB) is decreased, while it is overestimated in the opposite case. Furthermore, it also represents that the vertical stress factor (VSF) converges to a specific value when the depth is increased whille keeping the development area identical.

Change of Fish Fauna and Community Structure in the Naeseong Stream around the Planned Yeongju Dam (영주댐 예정지를 중심으로 한 내성천의 어류상과 군집구조의 변화)

  • Kang, Yeong-Hoon;Kim, Sang-Ki;Hong, Gi-Bung;Kim, Han-Sun
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.226-238
    • /
    • 2011
  • Ichthyological fauna and community structure were surveyed in the Naeseong Stream around the planed Yeongju Dam, Yeongju City, Gyeongsangbuk-do from April 2007 to October 2009, During the survey period, 27 species (25 genera, 10 families) were collected. Cyprinid fish comprised 63.0% (17 species) and cobitid fish comprised 7.4% (2 species). Ten of the 27 species (37.0%) were endemic species. The dominant and subdominant species based on the number of individuals was Zacco platypus (43.2%) and Zacco koreanus (15.8%), respectively. Introduced from the other native rivers and exotic fish were Opsariichthys uncirostris amurensis, Leiocassis ussuriensis, and Micropterus salmoides (11.1%). The declining population density of Zacco koreanus and its subdominant status represents a change, since, up until the mid 1990's, it was widely distributed throughout the area and was the dominant species. The distribution area of Zacco koreanus decreased in size; by 2009, it no longer inhabited the lower reaches of the Naeseong Stream. On the other hand, Zacco platypus remained the dominant species throughout the area, except for the upper-reaches of the water-course. Gobiobotia naktongensis inhabited all areas of Naeseong Stream, which mainly has a sandy bottom. Analyses of the fish community revealed species diversity, even-ness and dominant indices were 0.881, 0.615, and 0.230 respectively. These results showed that the main river, in which the water width and flow are abundant and which has various habitats, has a higher species diversity (0.829) than the tributary (0.735).