• 제목/요약/키워드: tribological property

검색결과 64건 처리시간 0.023초

다양한 유기분자막의 마찰특성 비교 (Comparison of the Tribological behaviors of Various Organic Molecular Films)

  • 김두인;안효석;김충현
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.386-390
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS) and compound of epoxy resin and poly (paraphenylene)(EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope(AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

다양한 유기분자막의 마찰특성 비교 (Comparison of the tribological behaviors of various organic molecular films)

  • 김두인;안효석;김충현
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.49-54
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly〔styrene-b-(ethylene-co-butylene)-b-styrene〕(SEBS) and compound of epoxy resin and poly (paraphenylene) (EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope (AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

  • PDF

표면 개질화된 탄소나노튜브 강화 고분자 복합재료의 마모 특성 (Tribological Property of Surface Modified Carbon Nanotube Reinforced Polymer Matrix Composites)

  • 박주혁;아부바카술롱
    • Tribology and Lubricants
    • /
    • 제21권6호
    • /
    • pp.302-305
    • /
    • 2005
  • Various carbon nanotubes (CNTs) are added into the epoxy matrix as reinforcements to investigate the effect on the wear behavior. Effects to the tribological properties of different loading concentrations and types of surface modification are investigated by using a linear reciprocal wear tester. As increasing the concentration of CNTs shows the reduction of the wear loss. Moreover, surface modified CNTs give better tribological property than as produced CNTs. It is due that the functional groups on the surface of CNTs increase the interfacial bonding between CNTs and epoxy matrix through chemical bonding. Changes in worn surface morphology are observed by optical microscope and SEM to investigate the wear behavior. CNTs in the epoxy matrix near the surface are exposed and it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the CNTs.

반응소결 SiC/Graphite 복합체에서 Graphite 입자의 크기에 따른 마찰마모특성 (Tribological Properties of Reaction-Bonded SiC/Graphite Composite According to Particle Size of Graphite)

  • 백용혁;서영현;최웅;이종호
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.854-860
    • /
    • 1997
  • The tribological property of ceramics is very important for use in seal rings, pump parts, thread guides and mechanical seal, etc. In the present study, which RBSC/graphite composites were manufactured by adding graphite powders with different particle sizes to mixtures of SiC powder, metallic silicon, carbon black and alumina, effects on the tribological property of each RBSC/graphite composite was investigated in accordance with the particle size of the added graphite powder. The water absorption, the bending strength and the resistance for the friction and wear were measured, and the crystalline phase and the microstructure were respectively examined by using XRD and SEM. In case that the particle size of the graphite powder was fine(2${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was accelerated, thereby making the increase of the bending strength and the decrease of the water absorption, but no improvement for the tribological properties. Furthermore, in case that the particle size of the graphite powder was some large(88~149${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was not accelerated, to thereby make the decrease of the bending strength and the increase of the water absorption, but the improvement for the tribological property of only the composite having the graphite powder of 20 vol%. In addition, in case that the particle size distribution of the graphite powder was large (under 53 ${\mu}{\textrm}{m}$), there was no improvement for every properties. However, the composites, which the graphite powder with the particle size of 53~88 ${\mu}{\textrm}{m}$ was added in 10~15 vol%, had the most increased resistance for the friction and wear which show the worn out amount of 0.4~0.6$\times$10-3 $\textrm{cm}^2$, and the value of the bending strength is 380~520 kg/$\textrm{cm}^2$.

  • PDF

대기 플라즈마 용사공정을 이용한 Fe계 벌크 비정질 금속 코팅의 초기 분말의 화학조성과 크기에 대한 미세 조직 및 마모 특성 (Microstructure and Tribological Properties along with Chemical Composition and Size of Initial Powder in Fe-based BMG Coating through APS)

  • 김정환;윤상훈;나현택;이창희
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.220-225
    • /
    • 2008
  • In this study, two kinds of Fe-based bulk metallic glasses (BMG) powder were built-up through atmospheric plasma spray (APS) technique. The microstructure of two coatings was analyzed through X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Crystallization and oxidation in coatings were affected by chemical composition and initial powder size. Then, both of them influenced the tribological property.

표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구 (An investigation of tribology properties carbon nanotubes reinforced epoxy composites)

  • 아부바카 빈 술렁;곽정춘;박주혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

습도에 따른 DLC 코팅의 마찰 거동 (Tribological Behavior of DLC Coatings at Various Humidities)

  • 조경만;안효석;김대은
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1842-1848
    • /
    • 2002
  • Although DLC coatings have good tribological properties, these are dependant on the deposition method, the property of contact surface, and test condition. Humidity, which has little influence on tribological behavior in macro scale, is an important factor of tribological behavior in small devices like MEMS. The objective of this study is to investigate the tribological behavior of DLC coatings with particular attention to their wettability at various humidities. DLC coatings were deposited on Si substrates and tested using a reciprocating friction tester against Si$_3$N$_4$balls at various humidities. The results showed that the tribological behavior of DLC coatings was dependant on relative humidity and wettablility of DLC coatings. Friction coefficient at high relative humidity was higher thar that at low relative humidity. The tungsten-containing DLC coatings had a good wear resistance at low relative humidity whereas DLC coatings derived from argon(Ar)+cesium(Cs) gases showed a good wear resistance at high relative humidity.

TRIBOLOGICAL PROPERTIES OF DLC FILMS SLIDING AGAINST DIFFERENT STEELS

  • Suzuki, M.;Tanaka, A,
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.173-174
    • /
    • 2002
  • To study the effects of mating materials on the tribological properties of DLC films. we used a ball-on-plate reciprocating friction tester in dry air and mating materials of martensite stainless steel (hardened, annealed SUS440C), austenite stainless steels (SUS304), and bearing steel (hardened, annealed SUJ2). At a light load of 0.6 N, the friction coefficient always exceeded ${\mu}>0.3$. Tribological properties of DLC film were still excellent above 0.6 N, except in sliding against annealed SUJ2. Analysis using micro-laser Raman spectroscopy showed that the difference between annealed SUJ2 and others materials appears mainly due to structural change in film.

  • PDF

Si 함유량에 따른 Si-DLC/DLC 코팅의 건조마찰 특성 (Tribological Behavior of Si-DLC/DLC Coatings with Various Si Contents)

  • 안효석
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.212-216
    • /
    • 2007
  • Although DLC coatings have good tribological properties, these are dependent on the deposition method, property of contact surface, and test condition. Si-DLC/DLC coatings with various Si content were deposited on Si substrates and tested using a reciprocating friction tester against steel balls. The results revealed that the tribological behavior of Si-DLC/DLC coatings was dependent on the Si content. The formation of transfer film and wear particles on the contact surface was greatly influenced by the Si content in DLC coatings. In particular, silicon oxide transfer film formed by tribochemical reaction contributed to reduce wear and friction.

염소가스 반응시간에 따른 TiC표면 탄소막의 Tribology 특성 (Dependence of $Cl_2$ Gas Reaction Time on Tribological Properties of TiC Derived Carbon Layer)

  • 임대순;배흥택;정지훈;나병철
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.20-24
    • /
    • 2009
  • TiC-derived carbon coatings have been synthesized at $600^{\circ}C$ temperature treatment with $H_2/Cl_2$ mixture gases. From Raman spectroscopy measurements, the modified layer was covered with carbon and the thick-ness of the layer was increased with increasing reaction time. And $I_D/I_G$ ratio was decreased with increasing reaction time. The superior tribological property was obtained from TiC reacted with $Cl_2$ gas for 2 hrs. And the tribological property measurements indicate that TiC-derived carbon layer has $0.9{\times}10_{-6}mm^3/Nm$ in wear coefficient and 0.13 in friction coefficient.