• Title/Summary/Keyword: tribological properties

Search Result 322, Processing Time 0.025 seconds

Microstructure and Tribological Properties of Ti-Si-C-N Nanocomposite Coatings Prepared by Filtered Vacuum Arc Cathode Deposition

  • Elangovan, T.;Kim, Do-Geun;Lee, Seung-Hun;Kim, Jong-Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • The demand for low-friction, wear and corrosion resistant components, which operate under severe conditions, has directed attentions to advanced surface engineering technologies. The Filtered Vacuum Arc Cathode Deposition (FVACD) process has demonstrated atomically smooth surface at relatively high deposition rates over large surface areas. Preparation of Ti-Si-C-N nanocomposite coatings on (100) Si and stainless steel substrates with tetramethylsilane (TMS) gas pressures to optimize the film preparation conditions. Ti-S-C-N coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nanoindentation, Rockwell C indentation and ball-on-disk wear tests. The XRD results have confirmed phase formation information of TiSiCN coatings, which shows mixing of TiN and TiC structure, corresponding to (111), (200) and (220) planes of TiCN. The chemical composition of the film was investigated by XPS core level spectra. The binding energy of the elements present in the films was estimated using XPS measurements and it shows present of elemental information corresponding to Ti2p, N1s, Si 2p and C1. Film hardness and elastic modulus were measured with a nano-indenter, and film hardness reached 40 GPa. Tribological behaviors of the films were evaluated using a ball-on-disk tribometer, and the films demonstrated properties of low-friction and good wear resistance.

  • PDF

Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles (탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가)

  • Choi, Cheol;Jung, Mi-Hee;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.

Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method (전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상)

  • Oh J.S.;Park J.H.;Kim W.W.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.

Tribological Behavior of Whiteware with Different Transparent Glazes

  • Heo, Sujeong;Kim, Soomin;Kim, Ungsoo;Pee, Jaehwan;Han, Yoonsoo;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Oh, Yoonsuk
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Tribological properties of whiteware with various transparent glazes, which have different composition and microstructure, were investigated. The wear resistance and friction behavior of the glazed whiteware are a very important aspect if the whiteware is used as tableware and for sanitation purposes. Generally, the wear property is influenced by the microstructure and surface morphology of the material. The whiteware specimens with two kinds of transparent glazes were fabricated by using the commercially available porcelain body. Furthermore, the commercial tableware, such as bone china, and traditional tableware were also examined as reference materials. All of the specimens showed that different pore structures might affect the mechanical and tribological properties. It seems that the wear resistance of whiteware is substantially related to the pore size and distribution of glaze rather than the hardness value of the specimen.

Sliding Wear of Alumina-silicon Carbide Nanocomposites

  • Kim, Seung-Ho;Lee, Soo-Wohn;Kim, Yun-Ho;Riu, Doh-Hyung;Tohru Sekino;Koichi Niihara
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1080-1084
    • /
    • 2001
  • Alumina-based nanocomposites have improved mechanical properties such as hardness, fracture toughness and fracture strength compared to monolithic ceramics. In this study, alumina with 5 vol% of nanosized SiC was sintered by a hot pressing technique at 1600$\^{C}$, 30 MPa for 1h in an argon gas atmosphere. Microstructures and mechanical properties in alumina-SiC nanocomposite were investigated. Moreover, tribological properties in air and water were compared each other. Relationships of wear properties with mechanical properties such as hardness, strength, and fracture toughness as well as microstructure were studied. Based on experimental results it was found that nanosized SiC retarded grain growth of matrix alumina. Mechanical properties such as hardness, fracture toughness and strength were improved by the addition of nanosized SiC in alumina. Improved mechanical properties resulted in increased sliding wear resistance. Tribological behavior of nanocomposites in water seemed to be governed by abrasive wear.

  • PDF

Microstructure and Tribological Properties along with Chemical Composition and Size of Initial Powder in Fe-based BMG Coating through APS (대기 플라즈마 용사공정을 이용한 Fe계 벌크 비정질 금속 코팅의 초기 분말의 화학조성과 크기에 대한 미세 조직 및 마모 특성)

  • Kim, Jung-Hwan;Yoon, Sang-Hoon;Na, Hyun-Taek;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.220-225
    • /
    • 2008
  • In this study, two kinds of Fe-based bulk metallic glasses (BMG) powder were built-up through atmospheric plasma spray (APS) technique. The microstructure of two coatings was analyzed through X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Crystallization and oxidation in coatings were affected by chemical composition and initial powder size. Then, both of them influenced the tribological property.

Tribological properties of ultra-thin diamond-like carbon coating at various humidity

  • Cuong, Pham Duc;Ahn, Hyo-Sok;Kim, Choong-Hyun;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.161-162
    • /
    • 2002
  • This study concerns the tribological behaviors of ultra-thin DLC coating with 3 nm thickness deposited in a mixed gas of argon + 20 % hydrogen as a function of humidity. Reciprocating wear tests employing a micro wear tester were performed under various normal loads and relative humidity in air environment. The chemical composition of the original and worn surfaces were studied by Auger electron spectroscopy (AES). It showed that the ultra-thin DLC coating exhibited low friction with enough wear stability at low normal load (0.18 N) and its tribological behavior was strongly dependent on the humidity. The sample surfaces before and after the test were examined using atomic force microscopy (AFM). Capillary force and meniscus areas were discussed in order to explain the influence of humidity on the friction force.

  • PDF

Tribological Characteristics of Plasma Ion Nitriding Surface Treatment (플라즈마 이온 질화 표면처리의 윤활 및 마모 특성)

  • 좌성훈;김선교;박주승
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 1996
  • Scuffing and severe wear of the highly stressed sliding components have been very critical problems in the development of a rotary compressor. In order to improve durability and reliability of the compressor, plasma ion-nitriding was applied on the shaft and the vane surface. The effects of different treatment conditions on the mechanical and tribological properties of the ion-nitrided surfaces were investigated. Ion-nitrided surfaces showed better tribological performances than untreated surfaces. The best wear performance was observed when the shaft was nitrided in the condition of 450$\circ$C, 7 hours, $N_2:H_2=1:4$ gas mixture by forming a ductile nitrided layer which has $\gamma'$ phase microstructure. As nitrogen gas pressure increased, $\varepsilon$ phase layer was formed. This hard phase layer was observed to be more beneficial for the vane in reducing friction and wear.

Tribological Behavior of the Plasma Sprayed Fe$_2$O$_3$Added Zirconia Based Coatings ($Fe_2{O_3}$가 첨가된 지르코니아계 용사코팅층의 마모마찰 특성)

  • 신종한;임대순;안효석
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • High Temperature wear behavior of plasma sprayed zirconia coatings containing up to 10 mol% of Fe$_2$O$_3$ were investigated. The wear test results showed that the addition of Fe$_2$O$_3$ particles to zirconia improved the wear resistance and lowered the coefficient of friction. Optimum concentration of Fe$_2$O$_3$ was about 5 mol%. Similar degradation behavior was observed at about 40$0^{\circ}C$ for both zirconia and Fe$_2$O$_3$ added zirconia coatings. The results indicated that stabilization of tetragonal phase and changes in mechanical properties such as hardness and toughness were responsible for tribological behavior of plasma sprayed zirconia contain Fe$_2$O$_3$.

The Effects of Ni Addition in Cu Base Sintered Friction Material-Microstructure and Tribological Behavior

  • Chung, D.Y.;Kim, K.Y.;Lee, B.J.;Kim, J.G.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.55-58
    • /
    • 1995
  • The effects of Ni contents in Cu base sintered friction material were studied. The contents of Ni were increased up to 9 wt% in the Cu-Sn matrix. The microstincture and tribological behavior of the friction material were examined. Pin on disk type of constant speed friction test rig were used to measure the friction and the wear rates. The results show that Ni addition increased the friction coefficients and decreased the wear rates of the materials. Relations between microhardness of the matrix and friction properties have been discussed. In addition optimum Ni content is recommended through the analysis of wear debris.