• Title/Summary/Keyword: tribolayer

Search Result 3, Processing Time 0.021 seconds

A Study on the Tribolayer using Focused Ion Beam (FIB) (FIB를 이용한 트라이보층에 대한 연구)

  • Kim, Hong-Jin
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • Focused Ion Beam (FIB) has been used for site-specific TEM sample preparation and small scale fabrication. Moreover, analysis on the surface microstructure and phase distribution is possible by ion channeling contrast of FIB with high resolution. This paper describes FIB applications and deformed surface structure induced by sliding. The effect of FIB process on the surface damage was explored as well. The sliding experiments were conducted using high purity aluminum and OFHC(Oxygen-Free High Conductivity) copper. The counterpart material was steel. Pin-on-disk, Rotational Barrel Gas Gun and Explosively Driven Friction Tester were used for the sliding experiments in order to investigate the velocity effect on the microstructural change. From the FIB analysis, it is revealed that ion channeling contrast of FIB has better resolution than SEM and the tribolayer is composed of nanocrystalline structures. And the thickness of tribolayer was constant regardless of sliding velocities.

Phase Imaging of Worn Surface of TiN Coating and Interpretation by Force Spectroscopy

  • Hyo Sok;Chizhik, S-A;I Luzinov
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.69-75
    • /
    • 2000
  • The paper compares topography, phase contrast and force spectroscopy in atomic force microscopy data for evaluating the microheterogeneity of surface layer. The worn surface of ion-plated TiN coating was measured using both a laboratory-built and a commercial AFM. The results of analysis revealed structural and micromechanical heterogeneity of the worn surfaces. We demonstrated that the phase image allows relatively qualitative estimation of elastic modulus of the sample surface. The tribolayer formed in the worn surface possessed much lower stiffness than the original coating. It is shown that the most stable phase imaging is provided with a stiff cantilever. In this case, phase contrast is well conditioned, first of all, by microheterogeneity of elastic properties of the investigated surfaces. In this study an attempt was also made to correlate the results of phase imaging with that of the farce spectroscopy. The joint analysis of information on the surface properties obtained by the phase imaging and quantitative data measured with the force spectroscopy methods allows a better understanding of the nature of the surface micromechanical heterogeneity.

  • PDF

Tribological Properties of Nanoporous Structured Alumina Film (나노기공구조를 가진 알루미나필름의 트라이볼로지 특성)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Jun-Hee;Woo, Lee
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.