• Title/Summary/Keyword: triboelectric

Search Result 76, Processing Time 0.021 seconds

Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System (IoT 및 웨어러블 시스템을 위한 멀티 소스 기반 에너지 수확 구조)

  • Park, Hyun-Moon;Kwon, Jin-San;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.225-234
    • /
    • 2019
  • By using the Triboelectric nanogenerators, known as TENG, we can take advantages of high conversion efficiency and continuous power output even with small vibrating energy sources. Nonlinear energy extraction techniques for Triboelectric vibration energy harvesting usually requires synchronized active electronic switches in most electronic interface circuits. This study presents a nonlinear energy harvesting with high energy conversion efficiency to harvest and save energies from human active motions. Moreover, the proposed design can harvest and store energy from sway motions around different directions on a horizontal plane efficiently. Finally, we conducted a comparative analysis of a multi-mode energy storage board developed by a silicon-based piezoelectricity and a transparent TENG cell. As a result, the experiment showed power generation of about 49.2mW/count from theses multi-fully harvesting source with provision of stable energy storages.

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator (고효율 회전형 정전 나노 발전기의 기구학적 설계)

  • Jihyun Lee;Seongmin Na;Dukhyun Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.106-111
    • /
    • 2024
  • A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.

A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions

  • Ryoo, Hee Jae;Lee, Chan Woo;Han, Jong Won;Kim, Wook;Choi, Dukhyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.312-322
    • /
    • 2020
  • As the use of mobile devices increase, there is public interest in the utilization of the human motion generated mechanical energy. The human motion generated mechanical energies vary depending on the body region, type of motion, etc., and an appropriate device has to be designed to utilize them effectively. In this work, a device based on the principles of triboelectric generation and inertia was assessed in order to utilize the multi-axial mechanical energies generated by human motions. To improve the output performance we confirm the changes in the output that vary with the structural design, the reasons for such changes, and variations in performance based on the parts of the human body. In addition, the level of electrical energy generated based on motion type was measured; a maximum voltage of 30 V and a current of 2 ㎂ were generated. Finally, the proposed device was utilized in LEDs used for lighting, thus demonstrating that multi-axial mechanical energies can be harvested effectively. Based on the results, we expect that the developed device can be utilized as a sensor to detect mechanical energies, to sense changes in motion, or as a generator for auxiliary power supply for mobile devices.

Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator (마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템)

  • Yoon, Bo-Kyung;Lee, Jun-Young;Jun, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters (압전-마찰전기 복합 소재 기반의 고출력 에너지 하베스팅 기술 개발 리뷰)

  • Rasheed, Aamir;Park, Hyunje;Sohn, Min Kyun;Lee, Tae Hyeong;Kang, Dae Joon
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.54-88
    • /
    • 2020
  • Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, harvesting a single energy source only still pauses a great challenge in driving sustainable and maintenance-free monitoring and sensing devices. Over the last few years, research on high-performance mechanical energy harvesters at the micro and nanoscale has been directed toward the development of hybrid devices that either aim to harvest mechanical energy in addition to other types of energies simultaneously or to exploit multiple mechanisms to more effectively harvest mechanical energy. Herein, we appraise the rational designs for multiple energy harvesting, specifically state-of-the-art hybrid mechanical energy harvesters that employ multiple piezoelectric and triboelectric mechanisms to efficiently harvest mechanical energy. We identify the critical material parameters and device design criteria that lead to high-performance hybrid mechanical energy harvesters. Finally, we address the future perspectives and remaining challenges in the field.

Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications (Polytetrafluoroethylene 분말 현탁액을 통한 다공성 박막 제조 및 에너지 발생소자 응용)

  • Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • Porous polytetrafluoroethylene (PTFE) thin films are fabricated by spin-coating using a dispersion solution containing PTFE powders, and their crystalline properties are investigated after thermal annealing at various temperatures ranging from 300 to $500^{\circ}C$. Before thermal annealing, the film is densely packed and consists of many granular particles 200-300 nm in diameter. However, after thermal annealing, the film contains many voids and fibrous grains on the surface. In addition, the film thickness decreases after thermal annealing owing to evaporation of the surfactant, binder, and solvent composing the PTFE dispersion solution. The film thickness is systematically controlled from 2 to $6.5{\mu}m$ by decreasing the spin speed from 1,500 to 500 rpm. A triboelectric nanogenerator is fabricated by spin-coating PTFE thin films onto polished Cu foils, where they act as an active layer to convert mechanical energy to electrical energy. A triboelectric nanogenerator consisting of a PTFE layer and Al metal foil pair shows typical output characteristics, exhibiting positive and negative peaks during applied strain and relief cycles due to charging and discharging of electrical charge carriers. Further, the voltage and current outputs increase with increasing strain cycle owing to accumulation of electrical charge carriers during charge-discharge.

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators

  • Nguyen, Dinh Cong;Choi, Dukhyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.218-227
    • /
    • 2022
  • Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.

Water-Sloshing-Based Electricity Generating Device via Charge Separation and Accumulation (전하 분리와 축적을 통한 물의 슬로싱 현상 기반 전기에너지 발생 장치)

  • Cha, Kyunghwan;Heo, Deokjae;Lee, Sangmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.98-101
    • /
    • 2022
  • Liquid-based Triboelectric nanogenerator (L-TENG) is one of the alternatives to solid-based Triboelectric nanogenerator (S-TENG) because of the absence of surface damage which can decrease the durability of the generator. However, the L-TENG also has an obvious drawback of significantly lower output than that of S-TENG. This article produces water-sloshing-based electricity generating device (W-ED) with a new design of L-TENG that improves electrical output in portable form. The dual-electrode system, consisting of closed-loop circuit and inner electrode which enables water to contact directly in the bottle, can generate the open-circuit voltage and the short-circuit current of up to 348 V and 5.1 mA, respectively. By investigating the motion of water for each frequency, we propose that W-ED is suitable device for a variety of human motions. We expect that W-ED can be applied in small electrical devices or sensors in daily-use items.

Analysis of Power Generation Characteristics of TENG (Triboelectric Nanogenerator) Suitable for Domestic Transport Environment (국내 수송환경에 적합한 마찰전기 나노발전기의 발전특성 분석)

  • Jong-Min, Park;Hyun-Mo, Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.193-199
    • /
    • 2022
  • Sustainable energy supplies without the recharging and replacement of charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. The TENG harvests electrical energy from wasted mechanical energy in the ambient environment. TENG devices are very likely to be used in next-generation renewable energy and energy harvesting. TENG devices have the advantage of being able to manufacture very simple power devices. In this experiment, various organic dielectrics and inorganic dielectrics were used to improve the open voltage of TENG, Among the various organic dielectrics, Teflon-based FEP, which has the highest electron affinity, showed the highest open voltage and Al electrode was fabricated on Teflon substrate by sputtering deposition process. And AAO (Anodized Aluminum Oxide) nanostructures were applied to maximize the specific surface area of the TENG device. The power generation of TENG within the acceleration level (0.25, 0.5, 1.0, 1.5 and 2 G) and the frequency range (5-120 Hz) of the domestic transport environment was up to 4 V.

Module-type Triboelectric Nanogenerator for Collecting Various Kinetic Energies

  • Sungho, Ji;Youngchul, Chang;Jinhyoung, Park
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.376-382
    • /
    • 2022
  • A triboelectric nanogenerator (TENG) can obtain electrical output due to the reciprocal motion between two objects (i.e., rubbing), in which repetitive contact is made. High reliability, stable output, and high reproducibility are important aspects of the electrical output obtained through a TENG as a sensor or generator, thus enabling its meaningful use. Therefore, many researchers fabricated TENGs into individual parts in the form of one module type to obtain high reproducibility and reliability. Since a TENG manufactured as a module type operates as a single device, it is possible to collect kinetic energy and convert it into electrical energy through the interaction between internally configured elements without the need for a separate structure. In addition, it is relatively easy to apply the size to the body, machine tools, and natural environment by simply adjusting the size suitable for use and surrounding environmental conditions. In this paper, the application cases of module-type TENGs are divided into four areas, and the research progress of module-type TENGs in each area is extensively reviewed.