• Title/Summary/Keyword: triaxial testing equipment

Search Result 12, Processing Time 0.025 seconds

Taming of large diameter triaxial setup

  • Nair, Asha M.;Madhavi Latha, G.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.251-262
    • /
    • 2012
  • Triaxial tests are essential to estimate the shear strength properties of the soil or rock. Normally triaxial tests are carried out on samples of 38 mm diameter and 76 mm height. Granular materials, predominantly used in base/sub-base construction of pavements or in railways have size range of 60-75 mm. Determination of shear strength parameters of those materials can be made possible only through triaxial tests on large diameter samples. This paper describes a large diameter cyclic triaxial testing facility set up in the Geotechnical Engineering lab of Indian Institute of Science. This setup consists of 100 kN capacity dynamic loading frame, which facilitates testing of samples of up to 300 mm diameter and 600 mm height. The loading ram can be actuated up to a maximum frequency of 10 Hz, with maximum amplitude of 100 mm. The setup is capable of carrying out static as well as dynamic triaxial tests under isotropic, anisotropic conditions with a maximum confining pressure of 1 MPa. Working with this setup is a difficult task because of the size of the sample. In this paper, a detailed discussion on the various problems encountered during the initial testing using the equipment, the ideas and solutions adopted to solve them are presented. Pilot experiments on granular sub-base material of 53 mm down size are also presented.

Development and Installation of Large-scale Geotechnical Testing Facilities (대형 지반시험장비의 개발 및 구축)

  • Seo, Min-Woo;Ha, Ik-Soo;Kim, Yong-Seong;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1233-1240
    • /
    • 2005
  • As the geotechnical technologies have grown, the size of civil structures has become bigger than before, thereby requiring large-scale geotechnical testing equipments which can evaluate the mechanical behavior of large size testing materials such as gravel, crushed rock and so on. These kind of large testing equipments are usually used to evaluate the mechanical characteristics of large size material which are applied in the large infra structures like dam, seashore structure, coastal landfill, soil-structure interaction and seismic response of large-scale structure. In this research, state-of-the-art information in the field of geotechnical engineering was collected and summarized for such large-scale experimental equipments as large-scale geo-centrifuge, large-scale triaxial testing machine, large-scale direct shear testing apparatus and large-scale oedometer.

  • PDF

Development and Verification of Large Triaxial Testing System for Dynamic Properties of Granular Materials (조립재료 동적물성 산정을 위한 대형삼축압축시험장비 구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Choo, Yun-Wook;Lee, Sei-Hyun;Kang, Tae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.5-17
    • /
    • 2010
  • Coarse granular material is used as important fill material in most of large embankments such as railway, road, dam and so on. Therefore, the accurate design parameters of the coarse granular material are necessarily required in design and construction. The behavior of the coarse granular material was not well understood because of the lack of large testing equipment capable of coarse granular material. A large triaxial testing system was developed in this research, capable of large specimens of 500 mm, 300 mm and 150 mm in diameter. In the new large triaxial testing system, the load cell is installed inside the triaxial cell and axial displacement is measured locally on a specimen in order to improve control and measurement in small strain level. Urethane specimens of 300 mm and 50 mm in diameter were prepared. The large triaxial tests were performed on the 300 mm diameter urethane specimens while RC/TS and impact echo tests on the 50 mm diameter urethane specimens to verify this testing system. In this verification test results, we could ascertain the reasonable test results of the KRRI large triaxial testing system.

Experimental investigation on loading collapse curve of unsaturated soils under wetting and drying processes

  • Uchaipichat, Anuchit
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.203-211
    • /
    • 2010
  • An experimental program of isotropic loading tests on a compacted kaolin using a conventional triaxial equipment modified for testing unsaturated soils was perform to investigate a loading collapse curve of unsaturated soils along wetting and drying paths. The test data are presented in terms of effective stress on a range of constant suction. The suction hardening behavior was observed for both wetted and dried samples. With the use of an appropriate effective stress parameter, the unique relationship for loading collapse curve for wetting and drying processes was obtained.

Evaluation of Dynamic Properties through Large Triaxial Test : Development and Verification of Apparatus (대형삼축압축실험을 이용한 동적물성 산정 : 장비구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Jun-S.;Hwang, Seon-Keun;Park, Jae-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.640-649
    • /
    • 2010
  • Coarse granular materials such as gravel and crushed stone have been used as an important fill materials to large soil structure of railway, road, dam and so on. Although much studies for general soil materials have been carried out domestically, the studies for coarse materials were insufficient. Particularly, it is the level in which the study for dynamic properties(Elastic modulus and damping ratio) of coarse materials, applies the foreign country literature. This is due to the lack of large equipment for element test. But large soil structures made of coarse granular materials are generally important infrastructures. Therefore, the reliable design parameters for coarse materials should be obtained for safe and economic design, construction and maintenance. Triaxial test is the laboratory test method that is capable of controlling a confining pressure and boundary condition. In this project, we made a multi-purpose large triaxial testing system. This testing system is able to test coarse granular materials with maximum particle diameter of 100mm and support both the load control and displacement control. The load cell is installed inside of triaxial cell and the axial displacement is measured locally in order to control and measure more accurately in the small strain level. The verification test of this testing system was carried out with urethane verification specimens. So, from now on the useful information for coarse granular materials are expected to suggested by performing many tests with various material and condition.

  • PDF

Stress Relaxation Test of Granite under Water-Saturated Triaxial Condition (화강암의 응력완화현상에 관한 수침삼축시험)

  • 서용석
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.217-223
    • /
    • 2000
  • Microcracks that consist of quarry planes of granite are an essential factor affecting the long-term behavior of granite. In this paper, fine-grained granite distributed in the Tsukuba area of Japan was selected and microcracks were measured by using scanline method. In addition, a new relaxation testing equipment was developed to carry out stress relaxation test under water-saturated triaxial condition. Based on the relaxation test results with the initial stress level of 75%, the axial stress is decreased by 39%-49% just after the start of the tests, and the totally relaxed stress is 10∼24 MPa in 190 ERT (Elapsed relaxation time, hour). In addition, the relaxed stress is increased with the density of cracks which are parallel to axial load direction.

  • PDF

Resilient Modulus Test of Subgrade Soils Using Standard Triaxial Test Equipment (표준 삼축압축 시험기를 이용한 노상토의 회복탄성계수 시험법)

  • Woo, Je Yoon;Cho, Chun Whan;Moon, Hong Deug;Kim, Dong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.239-250
    • /
    • 1993
  • The dynamic resilient modulus tests to determine the $M_R$ of the soils require expensive equipments and well trained personnels to obtain reliable test results. These problems inherent in the dynamic resilient modulus testing have been realized as major negative factors to hinder the $M_R$ test from being practically implemented as a routine test. In this regard. it is highly desirable to develop a simpler alternative testing method incorporating inexpensive equipments and easy-to-perform testing procedures. Developed in this study is an alternative $M_R$ test method based on statically repeated loading scheme utilizing the standard static triaxial test equipments. Applicability and limitations of the developed static $M_R$ testing method are investigated for typical subgrade soils in Korea.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1049
    • /
    • 2007
  • Recently, a theoretically-sound design approach, using an elastic multilayer model, is attempted in trackbed designs for the construction of high speed railways and new lines of conventional railways. In the elastic multilayer model, the stress-dependent resilient modulus($E_R$) is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. In this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil(SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

  • PDF

Effect of Characteristics of Sand/Gravel and Rock Materials on Behavior of Dam during Construction and Impounding (사력재와 석산재의 특성이 축조와 담수시 댐체 거동에 미치는 영향)

  • Seo, Min-Woo;Cho, Sung-Eun;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.45-55
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages which it has compared with rockfill dam and recently, sand/gravel materials, Instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In Korea, two dams using sand/gravel materials as a main fill material were designed and are being constructed. In this research, the strength and deformation characteristics of the rockfill and sand/gravel materials taken from 2 dam sites were tested by using a laboratory large triaxial testing equipment for a total of 7 cases. From the results of large triaxial and compaction tests, it was observed that two kinds of materials show a little different compaction, shear strenght and deformation characteristics. It could be expected that the shear strength of sand/gravel material was not disadvantageous compared with that of rockfill materials, however, there was some difference between two materials with respect to behavior characteristics. On the other hand, smaller displacements were observed from numerical analysis based on the data from a large triaxial test when the sand/gravel is used as a main fill material compared with the case when the crushed rock material is used as a main fill material. Finally, in spite of a little different shear strength and behavior characteristic between two materials, it was concluded that it will not lead to a significant problem when the sand/gravel material is used as a main rockfill material.