• Title/Summary/Keyword: triangular element

Search Result 331, Processing Time 0.037 seconds

Analysis for Torsion of Hollow Beam by Least Squares and Boundary Elements Method (최소자승법 및 경계요소에 의한 중공단면 보의 비틀림 해석)

  • Kim, Chi-Kyung;Bae, Joon-Tai
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.175-182
    • /
    • 2012
  • In this paper we are concerned with the performance of structural stability of torsion in square cross section of a beam with holes. The critical load is defined as the smallest load at which the equilibrium of the structure fails to be stable as the load is slowly increased from zero. The beams subjected to torsion are frequently encountered in general structures and these forces influence to the stability of structure. The boundary element method is found to be very efficient and accurate for the analysis of torsion problems including complex boundary conditions with respect to its simplicity and generality. In this paper, it is required to derive the boundary element formulation for torsion problem and integrate directly on the discrete boundary. To investigate the validity of the developed computer program, three distinctly solid cross-sections which are elliptical, rectangular and triangular one are analyzed, and comparisons are made with analytical approaches where these can also be used.

Two dimensional variable-length vector storage format for efficient storage of sparse matrix in the finite element method (유한요소법에서 희소행렬의 효율적인 저장을 위한 2차원 가변길이 벡터 저장구조)

  • Boo, Hee-Hyung;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.9-16
    • /
    • 2012
  • In this paper, we propose the two dimensional variable-length vector storage format which can be used for efficient storage of sparse matrix in the FEM (finite element method). The proposed storage format is the method storing only actual needed non-zero values of each row on upper triangular matrix with the total rows N, by using two dimensional variable-length vector instead of $N{\times}N$ large sparse matrix of entire equation of finite elements. This method only needs storage spaces of the number of minimum 1 to maximum 5 in 2D grid structure and the number of minimum 1 to maximum 14 in 3D grid structure of analysis target. The number doesn't excess two times although involving index number. From the experimental result, we can find out that the proposed storage format can reduce the memory space more effectively, as the total number of nodes increases, than the existing skyline storage format storing maximum column height.

Scan Element Pattern and Scan Impedance of Open-Ended Waveguide Away Antenna (개방형 도파관 배열 안테나의 조향 소자 패턴 및 조향 임피던스에 관한 연구)

  • Yu, Je-Woo;Rah, Dong-Kyoon;Kim, Dong-Seok;Kim, Chan-Hong;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.7-14
    • /
    • 2007
  • In this paper, the scan characteristics of phased array antenna consisted of rectangular open-ended waveguide with a triangular grid are investigated. An infinite array structure is analyzed by numerically solving the integral equation for the electric field over the waveguide aperture using waveguide mode function and Floquet mode function. Next, SEP(Scan Element Pattern) and SI(Scan Impedance) characteristics are simulated by CST's MWS(Microwave Studio) and Ansoft's HFSS(High Frequency Structure Simulator) for the finite and infinite array structures. Also, validity of these approaches is verified by comparing the calculated and simulated results with the measured ones for an $8{\times}8$ subarray. Within 10.5 % fractional bandwidth in the X-band, the fabricated subarray showed the flat gain characteristic in the scan range of ${\pm}45^{\circ}C$ in the E-plane(azimuth) and ${\pm}20^{\circ}C$ in the H-plane(elevation), and also showed the return loss characteristic of less than -10 dB.

A Study on Integraion Method for Improvement of Numerical Stability of Meshfree Method (무요소법의 수치적 안정성 개선을 위한 적분기법 연구)

  • Kang, JaeWon;Kang, Da Hoon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • In order to generate meshes automatically for finite element analysis of complex structures such as aircraft, a large number of triangular elements are typically created. However, triangular elements are less accurate than rectangular elements, so it is difficult to obtain a reliable solution. This problem can be improved through the meshfree method using the back cell integration. However, this method also causes some problems such as over-use of the integration points and inefficiency of the integral domain. In order to improve these problems, a method of performing integration by setting the integral area based on a node basis has been proposed, but in the case of incompressible material problems, the numerical accuracy deteriorates due to the vibration phenomenon of the solution. Therefore, in this paper, the modified meshfree method is proposed which sets the integral domain as an element domain instead of the nodal domain, and the proposed method improves the numerical instability caused by the conventional meshfree method without decreasing the accuracy regardles of the shape of integral domain. The effectiveness of the modified meshfree method is verified by using 2-D examples.

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method (Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험)

  • Han, Byung-Chan;Kim, Yun-Yong;Kwon, Young-Jin;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2012
  • A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

Analysis of Hydrostatic Bulging of a Rectangular Diaphragm by Using the Energy Method (에너지법에 의한 직사각형 격막의 정수압벌징 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.684-695
    • /
    • 1992
  • The present study is concerned with the analysis of three-dimensional sheet metal forming process by the upper-bound method. For the analysis a systematic approach is necessary for the expression of geometric configuration of the deforming workpiece. In the present paper geometric configuration is constructed by three unit surfaces which are defined by sweeping the vertical section curves and boundary curve. The principal components of strain increment during the process is calculated directly from the change of geometric configuration for an arbitrary triangular element. The corresponding solution is found through optimization of the total energy consumption with respect to some parameters assumed in the velocity field and geometric profile. In order to verify the effectiveness of the present method, hydrostatic bulging of a rectangular disphragm is analyzed and the computation by the present method for the geometric shape renders the good result. From the comparison of the present results with the existing experimental results and elastic-plastic finite element solutions, good agreements have been obtained for the pressure curves, polar membrane strains and pressure distributions. The present method can thus be further applied to the analysis of other three-dimensional sheet metal forming processes.

A Meeting of Euler and Shannon (오일러(Euler)와 샤논(Shannon)의 만남)

  • Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • The flower and woman are beautiful but Euler's theorem and the symmetry are the best. Shannon applied his theorem to information and communication based on Euler's theorem. His theorem is the root of wireless communication and information theory and the principle of today smart phone. Their meeting point is $e^{-SNR}$ of MIMO(multiple input and multiple output) multiple antenna diversity. In this paper, Euler, who discovered the most beautiful formula($e^{{\pi}i}+1=0$) in the world, briefly guided Shannon's formula ($C=Blog_2(1+{\frac{S}{N}})$) to discover the origin of wireless communication and information communication, and these two masters prove a meeting at the Shannon limit, It reveals something what this secret. And we find that it is symmetry and element-wise inverse are the hidden secret in algebraic coding theory and triangular function.

Development and Application of a Landfill Gas Migration Model (폐기물 매립지에서의 가스 거동에 관한 모델 개발과 적용)

  • Park, Yu-Chul;Lee, Kang-Kun;Park, Chul-Hwi;Kim, Yong-Woo
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.325-333
    • /
    • 1996
  • numerical model is developed to estimate gas flow in the landfill site. Darcy's law, the mass conservation law, and the ideal gas state equation are combined to compose the governing equation for the steady-state and transient-state gas flows. The finite element method (FEM) is used as the numerical solution scheme. Two-dimensional radial symmetric triangular ring element is used to discretize the simulation domain. The steady state model developed in this study is compared with AIRFLOW that is a commercial model developed by Hydrologic Inc. Mass balance test is performed on the transient gas flow simulation. The developed model is applied to analyze the gas extraction experiment performed by Daewoo Institute of Construction Technology at the Nanjido landfill in 1993. The developed model was registered at Korea Computer Program Protection Foundation.

  • PDF

The Installation of Chul-Won Seismo-Acoustic Array (철원 지진-공중음파 관측망 설치)

  • ;;;;;;;Brian stump;Christ Hayward
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.52-57
    • /
    • 1999
  • Korea Earthquake Monitoring System(KEMS) in the Korea Institute of Geology Mining and Materials(KIGAM) as detected more than 1000 events since the end of 1998. But not all events are interpreted as earthquakes because many events are concentrated on daytime. It strongly implies that in addition to earthquake these events include artificial effects such as industrial blasting. Before the determination of eathquake charactertistics in the korean peninsula it is necessary to discriminate the detected events as earthquakes or artificial events. For the discriminant study KIGAM and SMU(Southern Methodist University) installed a triangular four-element 1-km aperture seismo-acoustic array at Chul-Won area northeast of Seoul Korea. Each array element includes a GS-13 seismometer in the bottom of borehole and a Validyne DP250-14 microbarometer sensor mounted inside of the borehole 1,2 meter deep connected to a 11 arm radial array of 10m porous soaker hoses. This array introduce the use of 2.4-GHz radios for inter-array self-contained solar-charged power system and GPS time-keeping system. A 24-bit digital data acquisition system performs 40 SPS in the infrasound and seismometer data. Velocity and direction of wind and temperature are also measured at hub site and included to the data stresam. This seismo-acoustic array will be used to identify and locate associated with industrial blasting and these identified and located events will be applied to form a ground truth database useful to assist the other development of discriminant studies.

  • PDF

Three-dimensional numerical analysis of nonlinear phenomena of the tensile resistance of suction caissons

  • Azam, Arefi;Pooria, Ahad;Mehdi, Bayat;Mohammad, Silani
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.255-270
    • /
    • 2023
  • One of the main parameters that affect the design of suction caisson-supported offshore structures is uplift behavior. Pull-out of suction caissons is profoundly utilized as the offshore wind turbine foundations accompany by a tensile resistance that is a function of a complex interaction between the caisson dimensions, geometry, wall roughness, soil type, load history, pull-out rate, and many other parameters. In this paper, a parametric study using a 3-D finite element model (FEM) of a single offshore suction caisson (SOSC) surrounded by saturated soil is performed to examine the effect of some key factors on the tensile resistance of the suction bucket foundation. Among the aforementioned parameters, caisson geometry and uplift loading as well as the difference between the tensile resistance and suction pressure on the behavior of the soil-foundation system including tensile capacity are investigated. For this purpose, a full model including 3-D suction caisson, soil, and soil-structure interaction (SSI) is developed in Abaqus based on the u-p formulation accounting for soil displacement (u) and pore pressure, P.The dynamic responses of foundations are compared and validated with the known results from the literature. The paper has focused on the effect of geometry change of 3-D SOSC to present the soil-structure interaction and the tensile capacity. Different 3-D caisson models such as triangular, pentagonal, hexagonal, and octagonal are employed. It is observed that regardless of the caisson geometry, by increasing the uplift loading rate, the tensile resistance increases. More specifically, it is found that the resistance to pull-out of the cylinder is higher than the other geometries and this geometry is the optimum one for designing caissons.