• Title/Summary/Keyword: trend algorithm

Search Result 438, Processing Time 0.027 seconds

A Rule-based Urban Image Classification System for Time Series Landsat Data

  • Lee, Jin-A;Lee, Sung-Soon;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.637-651
    • /
    • 2011
  • This study presents a rule-based urban image classification method for time series analysis of changes in the vicinity of Asan-si and Cheonan-si in Chungcheongnam-do, using Landsat satellite images (1991-2006). The area has been highly developed through the relocation of industrial facilities, land development, construction of a high-speed railroad, and an extension of the subway. To determine the yearly changing pattern of the urban area, eleven classes were made depending on the trend of development. An algorithm was generalized for the rules to be applied as an unsupervised classification, without the need of training area. The analysis results show that the urban zone of the research area has increased by about 1.53 times, and each correlation graph confirmed the distribution of the Built Up Index (BUI) values for each class. To evaluate the rule-based classification, coverage and accuracy were assessed. When Optimal allowable factor=0.36, the coverage of the rule was 98.4%, and for the test using ground data from 1991 to 2006, overall accuracy was 99.49%. It was confirmed that the method suggested to determine the maximum allowable factor correlates to the accuracy test results using ground data. Among the multiple images, available data was used as best as possible and classification accuracy could be improved since optimal classification to suit objectives was possible. The rule-based urban image classification method is expected to be applied to time series image analyses such as thematic mapping for urban development, urban development, and monitoring of environmental changes.

An Effective Increment리 Content Clustering Method for the Large Documents in U-learning Environment (U-learning 환경의 대용량 학습문서 판리를 위한 효율적인 점진적 문서)

  • Joo, Kil-Hong;Choi, Jin-Tak
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.859-872
    • /
    • 2004
  • With the rapid advance of computer and communication techonology, the recent trend of education environment is edveloping in the ubiquitous learning (u-learning) direction that learners select and organize the contents, time and order of learning by themselves. Since the amount of education information through the internet is increasing rapidly and it is managed in document in an effective way is necessary. The document clustering is integrated documents to subject by classifying a set of documents through their similarity among them. Accordingly, the document clustering can be used in exploring and searching a document and it can increased accuracy of search. This paper proposes an efficient incremental clustering method for a set of documents increase gradually. The incremental document clustering algorithm assigns a set of new documents to the legacy clusters which have been identified in advance. In addition, to improve the correctness of the clustering, removing the stop words can be proposed.

  • PDF

Segmentation of Continuous Speech based on PCA of Feature Vectors (주요고유성분분석을 이용한 연속음성의 세그멘테이션)

  • 신옥근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.40-45
    • /
    • 2000
  • In speech corpus generation and speech recognition, it is sometimes needed to segment the input speech data without any prior knowledge. A method to accomplish this kind of segmentation, often called as blind segmentation, or acoustic segmentation, is to find boundaries which minimize the Euclidean distances among the feature vectors of each segments. However, the use of this metric alone is prone to errors because of the fluctuations or variations of the feature vectors within a segment. In this paper, we introduce the principal component analysis method to take the trend of feature vectors into consideration, so that the proposed distance measure be the distance between feature vectors and their projected points on the principal components. The proposed distance measure is applied in the LBDP(level building dynamic programming) algorithm for an experimentation of continuous speech segmentation. The result was rather promising, resulting in 3-6% reduction in deletion rate compared to the pure Euclidean measure.

  • PDF

Trend-based Sequential Pattern Discovery from Time-Series Data (시계열 데이터로부터의 경향성 기반 순차패턴 탐색)

  • 오용생;이동하;남도원;이전영
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.27-45
    • /
    • 2001
  • Sequential discovery from time series data has mainly concerned about events or item sets. Recently, the research has stated to applied to the numerical data. An example is sensor information generated by checking a machine state. The numerical data hardly have the same valuers while making patterns. So, it is important to extract suitable number of pattern features, which can be transformed to events or item sets and be applied to sequential pattern mining tasks. The popular methods to extract the patterns are sliding window and clustering. The results of these methods are sensitive to window sine or clustering parameters; that makes users to apply data mining task repeatedly and to interpret the results. This paper suggests the method to retrieve pattern features making numerical data into vector of an angle and a magnitude. The retrieved pattern features using this method make the result easy to understand and sequential patterns finding fast. We define an inclusion relation among pattern features using angles and magnitudes of vectors. Using this relation, we can fad sequential patterns faster than other methods, which use all data by reducing the data size.

  • PDF

A Performance Test of Mobile Cloud Service for Bayesian Image Fusion (베이지안 영상융합을 적용한 모바일 클라우드 성능실험)

  • Kang, Sanggoo;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.445-454
    • /
    • 2014
  • In recent days, trend technologies for cloud, bigdata, or mobile, as the important marketable keywords or paradigm in Information Communication Technology (ICT), are widely used and interrelated each other in the various types of platforms and web-based services. Especially, the combination of cloud and mobile is recognized as one of a profitable business models, holding benefits of their own. Despite these challenging aspects, there are a few application cases of this model dealing with geo-based data sets or imageries. Among many considering points for geo-based cloud application on mobile, this study focused on a performance test of mobile cloud of Bayesian image fusion algorithm with satellite images. Two kinds of cloud platform of Amazon and OpenStack were built for performance test by CPU time stamp. In fact, the scheme for performance test of mobile cloud is not established yet, so experiment conditions applied in this study are to check time stamp. As the result, it is revealed that performance in two platforms is almost same level. It is implied that open source mobile cloud services based on OpenStack are enough to apply further applications dealing with geo-based data sets.

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends (자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구)

  • Yu, So-Young
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.153-169
    • /
    • 2015
  • The combined approach of using ego-centric network analysis and dynamic citation network analysis for refining the result of LDA-based topic modeling was suggested and examined in this study. Tow datasets were constructed by collecting Web of Science bibliographic records of White LED and topic modeling was performed by setting a different number of topics on each dataset. The multi-assigned top keywords of each topic were re-assigned to one specific topic by applying an ego-centric network analysis algorithm. It was found that the topical cohesion of the result of topic modeling with the number of topic corresponding to the lowest value of perplexity to the dataset extracted by SPLC network analysis was the strongest with the best values of internal clustering evaluation indices. Furthermore, it demonstrates the possibility of developing the suggested approach as a method of multi-faceted research trend detection.

The study for NHPP Software Reliability Model based on Kappa(2) distribution (Kappa(2) NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.689-696
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Kappa(2) reliability model, which can capture the nomotonic decreasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on sum of the squared errors and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing two parameter of the Kappa distribution, was employed. This analysis of failure data compared with the Kappa model and the existing model using arithmetic and Laplace trend tests, bias tests is presented.

  • PDF

The Factors Influencing the Use of Shared Economy-Based Mobility Services

  • KIM, Hyeong-Min
    • Journal of Distribution Science
    • /
    • v.18 no.1
    • /
    • pp.107-121
    • /
    • 2020
  • Purpose: Shared mobility services are the most notable in the shared economy; however, they have yet to be activated in Korea due to various regulations and conflicts amongst stakeholders. Nevertheless, shared mobility has become an irresistible trend of the times, as it can cause a great deal of economic and environmental benefits. In this vein, the purpose of this study is to contribute to the revitalization of shared mobility services in Korea and to provide service providers with implications for developing consumer-oriented marketing strategies. Research design, data and methodology: Based on the reasons that the users do not use shared mobility service, the factors influencing the behaviors of shared mobility users are structured and analyzed in a reliable, technical and procedural manner. To this end, the theory of reasoned action (TRA) of Ajzen and Fisbbein, the initial trust model (ITM), task technology fit (TTF) and switching cost (SC) are adopted. A total of 202 questionnaires were collected from the respondents who were aware of shared mobility. Then statistical processing of the collected data used SmartPLS(v.3.2.8), a PLS-SEM (Partial Least Squares Structural Equation Modeling) analysis program. The steps of the analysis are as follows. First, a PLS-Algorithm analysis was performed to evaluate the measurement model, and a Bootstraping and Blindfolding analysis was performed to evaluate the structural model and verify the hypotheses. Second, a multi-group analysis (PLS-MGA) was conducted to further analyze the differences depending on whether or not users experienced shared mobility service. Results: The results showed that initial trusts model (ITM) and task technology fit (TTF) have positive effects on users' behaviors through the mediation of the intention to use. As opposed to the assumption, switching costs did not have negative moderating effects in relation to the intention to use and users' behaviors. The influence of IT self-efficacy was significant, depending on the prior experience to use shared mobility services. Conclusions: This study will contribute to the revitalization of domestic shared mobility services and the formulation of service providers' marketing strategies. In future studies, there is a need to explore, reconstruct, and validate factors other than the impact factors of the shared mobility services used in this research model.

Monitoring Trends of Safety Technology Development of Industry Fields Using Patent Analysis (특허분석을 활용한 산업별 안전기술개발 동향 모니터링)

  • Choi, Yuri;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.92-100
    • /
    • 2020
  • Along with the rapid development of industrial technology, the industrial structure has been continuously changed. Accordingly, safety technologies have been gradually developed to be applied into various industrial fields as well, not limited to a specific industry area. As a result, it became important to analyze and predict trends of safety technology development in order to establish technology strategies for industrial safety. In particular, since patents are easily accessible to gather the technology and business information, many studies have highlighted technology forecasting using patent information. Thus, this study proposes the patent analysis of monitoring trends of safety technologies of industry fields, taking into account both static and dynamic aspects through index and text analysis. First, patent documents containing safety-related keywords are collected from the WIPSON database for extracting technology information. Then, the development trends of safety technologies by industry fields are identified and analyzed through the analysis of indicators such as marketability, growth, and activation. The results of various indicator analyses of safety technologies are visualized to compare among industrial safety technologies for businesses and technology developers. Second, textmining algorithm is applied to identify trends of specific technology keywords of major industries extracted from patent index analysis. As a result, it is expected that the safety manager uses the patent analysis of safety technologies to provide safety technology information with safety-related companies and institutes. The extracted safety technologies are applicable to business practice and predict future promising technologies.