• 제목/요약/키워드: tree-based models

Search Result 437, Processing Time 0.029 seconds

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

Characteristics of Growth and Development of Empirical Stand Yield Model on Pinus densiflora in Central Korea (중부지방소나무의 생장특성 및 경험적 임분수확모델 개발)

  • Jeon, Ju Hyeon;Son, Yeong Mo;Kang, Jin Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.267-273
    • /
    • 2017
  • This study was conducted to construct a empirical yield table for Pinus densiflora in real forest. Since existing normal yield tables have been derived by studying and analyzing communities in ideal environment for tree growth, those tables provide more over-estimated values than ones from real forest. Because of this, there are some difficulties to apply the tables to empirical forest except for normal forest. In this study, therefore, we estimated stand growth for real forest on P. densiflora as the representative species of conifers. We used 1,957 sample plot data of P. densiflora in central Korea from National Forest Inventory (NFI) system, and analyzed through estimation, recovery and prediction in order by using Weibull function as a diameter distribution model. Weilbull and Schumacher models were applied for estimating mean DBH and mean basel area and it was found that the site index for P. densiflora in central Korea ranges from 8 to 14 at reference age 30. According to site 12 in the stand yield table, the Mean Annual Increment (MAI) of P. densiflora was $4.42m^3/ha$ at 30 years of age. Compared to existing volume table constructed before, it is showed that MAI of this study were lower. According to the paired t-test that is conducted with the gap of volume values between normal forest and real forest by site index and age, the P-value was less than 0.001 which is recognized to have a statistically significant difference. Based on the results in this study, it is considered to be helpful for practical management and management policy on P. densiflora in central Korea.

Predicting Cherry Flowering Date Using a Plant Phonology Model (생물계절모형을 이용한 벚꽃 개화일 예측)

  • Jung J. E.;Kwon E. Y.;Chung U. R.;Yun J. I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • An accurate prediction of blooming date is crucial for many authorities to schedule and organize successful spring flower festivals in Korea. The Korea Meteorological Administration (KMA) has been using regression models combined with a subjective correction by forecasters to issue blooming date forecasts for major cities. Using mean monthly temperature data for February (observed) and March (predicted), they issue blooming date forecasts in late February to early March each year. The method has been proved accurate enough for the purpose of scheduling spring festivals in the relevant cities, but cannot be used in areas where no official climate and phenology data are available. We suggest a thermal time-based two-step phenological model for predicting the blooming dates of spring flowers, which can be applied to any geographic location regardless of data availability. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units until a pre-determined chilling requirement for rest release. After the projected rest release date, it accumulates daily heat units (growing degree days) until a pre- determined heating requirement for flowering. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree (Prunus serrulata var. spontanea) at KMA Seoul station along with daily temperature data for 1923-1950. The model was applied to the 1955-2004 daily temperature data to estimate the cherry blooming dates and the deviations from the observed dates were compared with those predicted by the KMA method. Our model performed better than the KMA method in predicting the cherry blooming dates during the last 50 years (MAE = 2.31 vs. 1.58, RMSE = 2.96 vs. 2.09), showing a strong feasibility of operational application.

Genetic signature of strong recent positive selection at interleukin-32 gene in goat

  • Asif, Akhtar Rasool;Qadri, Sumayyah;Ijaz, Nabeel;Javed, Ruheena;Ansari, Abdur Rahman;Awais, Muhammd;Younus, Muhammad;Riaz, Hasan;Du, Xiaoyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.912-919
    • /
    • 2017
  • Objective: Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods: By using fixation index ($F_{ST}$) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and $F_{ST}$. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. Results: IL-32 is detected under positive selection using the $F_{ST}$ simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. Conclusion: This study provides evidence for IL-32 gene as under significant positive selection in goat.

Potential Impact of Climate Change on Distribution of Warm Temperate Evergreen Broad-leaved Trees in the Korean Peninsula (기후변화에 따른 한반도 난대성 상록활엽수 잠재서식지 분포 변화)

  • Park, Seon Uk;Koo, Kyung Ah;Kong, Woo-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.201-217
    • /
    • 2016
  • We accessed the climate change effects on the distributions of warm-evergreen broad-leaved trees (shorten to warm-evergreens below) in the Korean Peninsula (KP). For this, we first selected nine warm-evergreens with the northern distribution limits at mid-coastal areas of KP and climate variables, coldest month mean temperature and coldest quarter precipitation, known to be important for warm-evergreens growth and survival. Next, species distribution models (SDMs) were constructed with generalized additive model (GAM) algorithm for each warm-evergreen. SDMs projected the potential geographical distributions of warm evergreens under current and future climate conditions in associations with land uses. The nine species were categorized into three groups (mid-coastal, southwest-coastal, and southeast-inland) based on their current spatial patterns. The effects of climate change and land uses on the distributions depend on the current spatial patterns. As considering land uses, the potential current habitats of all warm-evergreens decrease over 60%, showing the highest reduction rate for the Kyungsang-inland group. SDMs forecasted the expansion of potential habitats for all warm-evergreens under climate changes projected for 2050 and 2070. However, the expansion patterns were different among three groups. The spatial patterns of projected coldest quarter precipitation in 2050 and 2070 could account for such differences.

  • PDF

Determination of Unit Hydrograph for the Hydrological Modelling of Long-term Run-off in the Major River Systems in Korea (장기유출의 수문적 모형개발을 위한 주요 수계별 단위도 유도)

  • 엄병현;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.4
    • /
    • pp.52-65
    • /
    • 1984
  • In general precise estimation of hourly of daily distribution of the long-term run-off should be very important in a design of source of irrigation. However, there have not been a satisfying method for forecasting of stationar'y long-term run-off in Korea. Solving this problem, this study introduces unit-hydrograph method frequently used in short-term run-off analysis into the long-term run-off analysis, of which model basin was selected to be Sumgin-river catchment area. In the estimation of effective rainfall, conventional method neglects the Soil moisture condition of catchment area, but in this study, the initial discharge (qb) occurred just before rising phase of the hydrograph was selected as the index of a basin soil moisture condition and then introduced as 3rd variable in the analysis of the reationship between cumulative rainfall and cumulative loss of rainfall, which built a new type of separation method of effective rainfall. In next step, in order to normalize significant potential error included in hydrological data, especially in vast catchment area, Snyder's correlation method was applied. A key to solution in this study is multiple correlation method or multiple regressional analysis, which is primarily based on the method of least squres and which is solved by the form of systems of linear equations. And for verification of the change of characteristics of unit hydrograph according to the variation of a various kind of hydrological charateristics (for example, precipitation, tree cover, soil condition, etc),seasonal unit hydrograph models of dry season(autumn, winter), semi-dry season (spring), rainy season (summer) were made respectively. The results obtained in this study were summarized as follows; 1.During the test period of 1966-1971, effective rainfall was estimated for the total 114 run-off hydrograph. From this estimation results, relative error of estimation to the ovservation value was 6%, -which is mush smaller than 12% of the error of conventional method. 2.During the test period, daily distribution of long-term run-off discharge was estimated by the unit hydrograph model. From this estimation results, relative error of estimation by the application of standard unit hydrograph model was 12%. When estimating by each seasonal unit bydrograph model, the relative error was 14% during dry season 10% during semi-dry season and 7% during rainy season, which is much smaller than 37% of conventional method. Summing up the analysis results obtained above, it is convinced that qb-index method of this study for the estimation of effective rainfall be preciser than any other method developed before. Because even recently no method has been developed for the estimation of daily distribution of long-term run-off dicharge, therefore estimation value by unit hydrograph model was only compared with that due to kaziyama method which estimates monthly run-off discharge. However this method due to this study turns out to have high accuracy. If specially mentioned from the results of this study, there is no need to use each seasonal unit hydrograph model separately except the case of semi-dry season. The author hopes to analyze the latter case in future sudies.

  • PDF

Affected Model of Indoor Radon Concentrations Based on Lifestyle, Greenery Ratio, and Radon Levels in Groundwater (생활 습관, 주거지 주변 녹지 비율 및 지하수 내 라돈 농도 따른 실내 라돈 농도 영향 모델)

  • Lee, Hyun Young;Park, Ji Hyun;Lee, Cheol-Min;Kang, Dae Ryong
    • Journal of health informatics and statistics
    • /
    • v.42 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Objectives: Radon and its progeny pose environmental risks as a carcinogen, especially to the lungs. Investigating factors affecting indoor radon concentrations and models thereof are needed to prevent exposure to radon and to reduce indoor radon concentrations. The purpose of this study was to identify factors affecting indoor radon concentration and to construct a comprehensive model thereof. Methods: Questionnaires were administered to obtain data on residential environments, including building materials and life style. Decision tree and structural equation modeling were applied to predict residences at risk for higher radon concentrations and to develop the comprehensive model. Results: Greenery ratio, impermeable layer ratio, residence at ground level, daily ventilation, long-term heating, crack around the measuring device, and bedroom were significantly shown to be predictive factors of higher indoor radon concentrations. Daily ventilation reduced the probability of homes having indoor radon concentrations ${\geq}200Bq/m^3$ by 11.6%. Meanwhile, a greenery ratio ${\geq}65%$ without daily ventilation increased this probability by 15.3% compared to daily ventilation. The constructed model indicated greenery ratio and ventilation rate directly affecting indoor radon concentrations. Conclusions: Our model highlights the combined influences of geographical properties, groundwater, and lifestyle factors of an individual resident on indoor radon concentrations in Korea.

Development of prediction model identifying high-risk older persons in need of long-term care (장기요양 필요 발생의 고위험 대상자 발굴을 위한 예측모형 개발)

  • Song, Mi Kyung;Park, Yeongwoo;Han, Eun-Jeong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.457-468
    • /
    • 2022
  • In aged society, it is important to prevent older people from being disability needing long-term care. The purpose of this study is to develop a prediction model to discover high-risk groups who are likely to be beneficiaries of Long-Term Care Insurance. This study is a retrospective study using database of National Health Insurance Service (NHIS) collected in the past of the study subjects. The study subjects are 7,724,101, the population over 65 years of age registered for medical insurance. To develop the prediction model, we used logistic regression, decision tree, random forest, and multi-layer perceptron neural network. Finally, random forest was selected as the prediction model based on the performances of models obtained through internal and external validation. Random forest could predict about 90% of the older people in need of long-term care using DB without any information from the assessment of eligibility for long-term care. The findings might be useful in evidencebased health management for prevention services and can contribute to preemptively discovering those who need preventive services in older people.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.