• 제목/요약/키워드: tree-based classification

검색결과 501건 처리시간 0.033초

PREPARATION OF CARBON DIOXIDE ABSORPTION MAP USING KOMPSAT-2 IMAGERY

  • Kim, So-Ra;Lee, Woo-Kyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.200-203
    • /
    • 2008
  • The objective of this study is to produce the $CO_2$ (carbon dioxide) absorption map using KOMPSAT-2 imagery. For estimating the amount of $CO_2$ absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC (Intergovernmental Panel on Climate Change) guideline, was used to convert the stand biomass into the amount of $CO_2$ absorption. Thereafter, the KOMPSAT-2 imagery was classified with the SBC (segment based classification) method in order to quantify $CO_2$ absorption by tree species. As a result, the map of $CO_2$ absorption was produced and the amount of $CO_2$ absorption was estimated by tree species.

  • PDF

커널 기반의 '단백질-단백질 작용' 의미 포함 문장 분류 (Kernel-based sentence classification for protein-protein interaction)

  • 김성환;엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.286-288
    • /
    • 2005
  • 본 논문에서는 tree kernel을 이용 '단백질-단백질 작용' 내용 포함 문장의 추출 방법을 제시한다. Tree kernel은 convolution kernel의 하나로서, 이를 이용하여 파싱 트리(parsing tree)로 표현된 문장을 데이터로 하여 '단백질-단백질 작용' 내용을 포함하고 있는 문장을 그렇지 않은 문장으로부터 분류할 수 있다. 문장 전체를 데이터로 사용하는 것보다 관련 영역을 서브트리(sub-tree)로 추출하여 사용한 것이 더 효과적임을 확인할 수 있었고, kernel계산에 있어 파싱 트리의 태그 내용이 중요한 역할을 하기 때문에 이를 '단백질-단백질 작용'의 의미를 반영할 수 있도록 semantic하게 변환한 효과 및 트리의 길이에 따른 영향도 실험해 보았다. 문제에 사용된 데이터의 양이 다소 적었지만, 데이터 표현 방식에 따라 파싱이나 패턴기법을 이용한 기존의 방법과 비교해 좋은 성능을 보일 수 있다는 가능성을 확인할 수 있었다.

  • PDF

Very Fast Decision Tree 기반 Naive Bayesian 알고리즘의 Weight 부여 기법 (An Attribute Weighting Approach for Naive Bayesian based on Very Fast Decision Tree)

  • 김세준;유승언;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.139-140
    • /
    • 2018
  • 본 논문에서는 지도 기계 학습 알고리즘 중 하나인 Naive Bayesian (NB) 알고리즘의 데이터 분류 정확도를 향상시키기 위하여 데이터 속성에 Weight를 부여하는 새로운 기법을 제안하였다. 기존에 Decision Tree(DT) 알고리즘의 깊이를 이용하여 Weigth를 부여하는 방법이 제안되었으나, DT를 구축하는데 오버헤드가 크기 때문에 데이터의 실시간 분석이나 자원 제한적인 환경에서의 적용은 어렵다는 단점이 있다. 이를 해결하기 위하여 본 논문에서는 최소한의 데이터를 사용하여 신속하게 DT를 구축하는 Very Fast Decision Tree (VFDT) 알고리즘 기반의 Weight 부여 기법을 제안함으로써 적은 오버헤드로 NB의 정확도를 향상시킨다.

  • PDF

FCM 알고리즘을 이용한 이진 결정 트리의 구성에 관한 연구 (A Study on the Design of Binary Decision Tree using FCM algorithm)

  • 정순원;박중조;김경민;박귀태
    • 전자공학회논문지B
    • /
    • 제32B권11호
    • /
    • pp.1536-1544
    • /
    • 1995
  • We propose a design scheme of a binary decision tree and apply it to the tire tread pattern recognition problem. In this scheme, a binary decision tree is constructed by using fuzzy C-means( FCM ) algorithm. All the available features are used while clustering. At each node, the best feature or feature subset among these available features is selected based on proposed similarity measure. The decision tree can be used for the classification of unknown patterns. The proposed design scheme is applied to the tire tread pattern recognition problem. The design procedure including feature extraction is described. Experimental results are given to show the usefulness of this scheme.

  • PDF

A Study on the Prediction of Community Smart Pension Intention Based on Decision Tree Algorithm

  • Liu, Lijuan;Min, Byung-Won
    • International Journal of Contents
    • /
    • 제17권4호
    • /
    • pp.79-90
    • /
    • 2021
  • With the deepening of population aging, pension has become an urgent problem in most countries. Community smart pension can effectively resolve the problem of traditional pension, as well as meet the personalized and multi-level needs of the elderly. To predict the pension intention of the elderly in the community more accurately, this paper uses the decision tree classification method to classify the pension data. After missing value processing, normalization, discretization and data specification, the discretized sample data set is obtained. Then, by comparing the information gain and information gain rate of sample data features, the feature ranking is determined, and the C4.5 decision tree model is established. The model performs well in accuracy, precision, recall, AUC and other indicators under the condition of 10-fold cross-validation, and the precision was 89.5%, which can provide the certain basis for government decision-making.

Effect of Prior Probabilities on the Classification Accuracy under the Condition of Poor Separability

  • Kim, Chang-Jae;Eo, Yang-Dam;Lee, Byoung-Kil
    • 한국측량학회지
    • /
    • 제26권4호
    • /
    • pp.333-340
    • /
    • 2008
  • This paper shows that the use of prior probabilities of the involved classes improve the accuracy of classification in case of poor separability between classes. Three cases of experiments are designed with two LiDAR datasets while considering three different classes (building, tree, and flat grass area). Moreover, random sampling method with human interpretation is used to achieve the approximate prior probabilities in this research. Based on the experimental results, Bayesian classification with the appropriate prior probability makes the improved classification results comparing with the case of non-prior probability when the ratio of prior probability of one class to that of the other is significantly different to 1.0.

농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석 (A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries)

  • 권수경;김경민;임중빈
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.291-304
    • /
    • 2021
  • 기후변화나 여러 환경문제들로부터 지속 가능한 산림자원 관리 및 모니터링을 위해 임상도의 지속적인 갱신은 필수적이다. 따라서 효율적이고 광역적인 산림 원격탐사의 필요성에 따라 차세대 중형위성 4호의 사업이 확정되어 2023년 발사 예정에 있다. 농림위성(차세대 중형위성 4호)는 5 m급 공간해상도와 Blue, Green, Red, Red Edge, Near Infra Red 총 5개 밴드를 가진다. 본 연구는 농림위성의 발사 및 활용에 앞서 농림위성과 유사한 사양을 가지는 RapidEye를 이용하여 위성 기반 수종분류의 가능성을 모의 평가하기 수행되었다. 본 연구는 춘천 선도산림경영단지를 연구 대상지로 하였으며, RapidEye 위성 영상기반 모의 수종분류는 생육기 영상으로부터 추출한 분광정보와 생육기와 비생육기의 NIR 밴드로부터 추출한 GLCM 질감특성 정보가 활용되었고, 이를 입력데이터로 하여 랜덤 포레스트(Random Forest) 기법을 적용하였다. 본 연구에서는 침엽수종 3종(소나무, 잣나무, 낙엽송), 활엽수종 5종(신갈나무, 굴참나무, 자작나무, 밤나무, 기타활엽수), 침활혼효림 총 9종으로 임상을 분류하였다. 분류 정확도는 임상도와 분류 결과를 대조하여 산출하였으며, 분류 정확도는 분광정보만 사용한 경우 39.41%, 분광정보과 질감정보를 모두 사용한 경우 69.29%의 정확도를 보였으며, 다중시기 분광정보 및 질감정보의 활용을 통해 5 m 해상도의 위성영상으로부터 수종분류의 가능성이 있음을 확인하였다. 향후 식생의 생태적 특성을 더욱 효과적으로 반영한 추가 변수를 대입하여 농림위성 활용 가능성을 제고하고자 한다.

사용자 의도 트리를 사용한 동적 카테고리 재구성 (Dynamic recomposition of document category using user intention tree)

  • 김효래;장영철;이창훈
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.657-668
    • /
    • 2001
  • 기존에 단어의 빈도수를 근간으로 하는 문서 분류 시스템에서는 단일 키워드를 사용하기 때문에 사용자의 의도를 충분히 반영한 문서 분류가 어려웠다. 이러한 단점을 개선하기 위하여 우선 기존의 설명에 근거한 학습방법(explanation based learning)에서 한 예제만 있어도 지식베이스 정보와 함께 개념을 학습할 수 있다는 점에 착안하여 먼저 사용자 질의를 분석, 확장한 후 사용자 의도 트리를 생성한다. 이 의도 트리의 정보를 기존의 키워드 빈도 수에 근거한 문서분류 과정에 제약 및 보충 정보로 사용하여 사용자의 의도에 더욱더 근접한 웹 문서를 분류할 수 있다. 문서를 분류하는 측면에서 볼 때 구조화된 사용자 의도 정보는 단순한 키워드의 한계를 극복하여 문서 분류 과정에서 특정 키워드 빈도수의 임계값을 결정함으로서 잃게되는 문서 및 정보를 좀더 보유하고 재적용할 수 있게 된다. 질의에서 분석, 추출된 사용자 의도 트리는 기존의 통계 및 확률을 사용한 문서 분류기법들과 조합하여 사용자 의도정보를 제공함으로서 카테고리의 형성 방향과 범위를 결정하는데 높은 효율성을 보인다.

  • PDF

벌점 부분최소자승법을 이용한 분류방법 (A new classification method using penalized partial least squares)

  • 김윤대;전치혁;이혜선
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.931-940
    • /
    • 2011
  • 분류분석은 학습표본으로부터 분류규칙을 도출한 후 새로운 표본에 적용하여 특정 범주로 분류하는 방법이다. 데이터의 복잡성에 따라 다양한 분류분석 방법이 개발되어 왔지만, 데이터 차원이 높고 변수간 상관성이 높은 경우 정확하게 분류하는 것은 쉽지 않다. 본 연구에서는 데이터차원이 상대적으로 높고 변수간 상관성이 높을 때 강건한 분류방법을 제안하고자 한다. 부분최소자승법은 연속형데이터에 사용되는 기법으로서 고차원이면서 독립변수간 상관성이 높을 때 예측력이 높은 통계기법으로 알려져 있는 다변량 분석기법이다. 벌점 부분최소자승법을 이용한 분류방법을 실제데이터와 시뮬레이션을 적용하여 성능을 비교하고자 한다.

컨볼루션 신경망을 기반으로 한 드론 영상 분류 (Drone Image Classification based on Convolutional Neural Networks)

  • 주영도
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.97-102
    • /
    • 2017
  • 최근 고해상도 원격탐사 자료의 분류방안으로 컨볼루션 신경망(Convolutional Neural Networks)을 비롯한 딥 러닝 기법들이 소개되고 있다. 본 논문에서는 드론으로 촬영된 농경지 영상의 작물 분류를 위해 컨볼루션 신경망을 적용하여 가능성을 검토하였다. 농경지를 논, 고구마, 고추, 옥수수, 깻잎, 과수, 비닐하우스로 총 7가지 클래스로 나누고 수동으로 라벨링 작업을 완료했다. 컨볼루션 신경망 적용을 위해 영상 전처리와 정규화 작업을 수행하였으며 영상분류 결과 98%이상 높은 정확도를 확인할 수 있었다. 본 논문을 통해 기존 영상분류 방법들에서 딥 러닝 기반 영상분류 방법으로의 전환이 빠르게 진행될 것으로 예상되며, 그 성공 가능성을 확신할 수 있었다.