• Title/Summary/Keyword: tree search algorithm

Search Result 248, Processing Time 0.023 seconds

Binary Search on Tree Levels for IP Address Lookup (IP 주소 검색을 위한 트리 레벨을 사용한 이진 검색 구조)

  • Mun, Ju-Hyoung;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2B
    • /
    • pp.71-79
    • /
    • 2006
  • Address lookup is an essential function in the Internet routers, and it determines overall router performance. In this paper, we have thoroughly investigated the binary-search-based address lookup algorithms and proposed a new algorithm based on binary search on prefix lengths. Most of the existing binary search schemes perform binary search on prefix values, and hence the lookup speed is proportional to the length of prefixes or the log function of the number of prefixes. The previous algorithm based on binary search on prefix lengths has superior lookup performance than others. However, the algorithm requires very complicated pre-computation of markers and best matching prefixes in internal nodes since naive binary search is not possible in their scheme. This complicated pre-computation makes the composition of the routing table and incremental update very difficult. By using leaf-pushing, the proposed algorithm in this paper removes the complicated pre-computation of the Previous work in performing the binary search on prefix lengths. The performance evaluation results show that the proposed scheme has very good performance in lookup speed compared with previous works.

An Index Data Structure for String Search in External Memory (외부 메모리에서 문자열을 효율적으로 탐색하기 위한 인덱스 자료 구조)

  • Na, Joong-Chae;Park, Kun-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.598-607
    • /
    • 2005
  • We propose a new external-memory index data structure, the Suffix B-tree. The Suffix B-tree is a B-tree in which the key is a string like the String B-tree. While the node in the String B-tree is implemented with a Patricia trio, the node in the Suffix B-tree is implemented with an array. So the Suffix B-tree is simpler and easier to be Implemented than the String B-tree. Nevertheless, the branching algorithm of the Suffix B-tree is as efficient as that of the String B-tree. Consequently, the Suffix B-tree takes the same worst-case disk accesses as the String B-tree to solve the string matching problem, which is fundamental and important in the area of string algorithms.

An efficient acceleration algorithm of GPU ray tracing using CUDA (CUDA를 이용한 효과적인 GPU 광선추적 가속 알고리즘)

  • Ji, Joong-Hyun;Yun, Dong-Ho;Ko, Kwang-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.469-474
    • /
    • 2009
  • This paper proposes an real time ray tracing system using optimized kd-tree traversal environment and ray/triangle intersection algorithm. The previous kd-tree traversal algorithms search for the upper nodes in a bottom-up manner. In a such way we need to revisit the already visited parent node or use redundant memory after failing to find the intersected primitives in the leaf node. Thus ray tracing for relatively complex scenes become more difficult. The new algorithm contains stacks implemented on GPU's local memory on CUDA framework, thus elegantly eliminate the problems of previous algorithms. After traversing the node we perform the latest CPU-based ray/triangle intersection algorithm 'Plucker coordinate test', which is further accelerated in massively parallel thanks to CUDA. Plucker test can drastically reduce the computational costs since it does not use barycentric coordinates but only simple test using the relations between a ray and the triangle edges. The entire system is consist of a single ray kernel simply and implemented without introduction of complicated synchronization or ray packets. Consequently our experiment shows the new algorithm can is roughly twice as faster as the previous.

  • PDF

Density-based Outlier Detection for Very Large Data (대용량 자료 분석을 위한 밀도기반 이상치 탐지)

  • Kim, Seung;Cho, Nam-Wook;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • A density-based outlier detection such as an LOF (Local Outlier Factor) tries to find an outlying observation by using density of its surrounding space. In spite of several advantages of a density-based outlier detection method, the computational complexity of outlier detection has been one of major barriers in its application. In this paper, we present an LOF algorithm that can reduce computation time of a density based outlier detection algorithm. A kd-tree indexing and approximated k-nearest neighbor search algorithm (ANN) are adopted in the proposed method. A set of experiments was conducted to examine performance of the proposed algorithm. The results show that the proposed method can effectively detect local outliers in reduced computation time.

The Design of RFID System using Group Separation Algorithm (Group Separation 알고리듬을 적용한 RFID system의 구현)

  • Ko, Young-Eun;Lee, Suk-Hui;Oh, Kyoung-Wook;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.25-32
    • /
    • 2007
  • In this paper, we propose the Group Separation Algorithm for RFID Tag Anti-Collision. We study the RFID Tag anti-collision technique of ALOHA and the anti-collision algorithm of binary search. The existing technique is several problems; the transmitted data rate included of data, the recognition time and energy efficiency. For distinction of all tags, the Group Separation algorithm identify each Tag_ID bit#s sum of bit #1#. In other words, Group Separation algorithm had standard of selection by collision table, the algorithm can reduce unnecessary number of search even than the exisiting algorithm. The Group Separation algorithm had performance test that criterions were reader#s number of repetition and number of transmitted bits for understanding tag. We showed the good performance of Group Separation algorithm better than exisiting algorithm.

Adaptive Decision Algorithm for an Improvement of RFID Anti-Collision (RFID의 효율적인 태그인식을 위한 Adaptive Decision 알고리즘)

  • Ko, Young-Eun;Oh, Kyoung-Wook;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • in this paper, we propose the Adaptive Decision Algorithm for RFID Tag Anti-Collision. We study the RFID Tag anti-collision technique of ALOHA and the anti-collision algorithm of binary search. The existing technique is several problems; the transmitted data rate included of data, the recognition time and energy efficiency. For distinction of all tags, the Adaptive Decision algorithm identify smaller one ,each Tag_ID bit's sum of bit '1'. In other words, Adaptive Decision algorithm had standard of selection by actively, the algorithm can reduce unnecessary number of search even than the exisiting algorithm. The Adaptive Decision algorithm had performance test that criterions were reader's number of repetition and number of transmitted bits for understanding tag. We showed the good performance of Adaptive Decision algorithm better than exisiting algorithm.

A Polynomial-time Algorithm to Find Optimal Path Decompositions of Trees (트리의 최적 경로 분할을 위한 다항시간 알고리즘)

  • An, Hyung-Chan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.195-201
    • /
    • 2007
  • A minimum terminal path decomposition of a tree is defined as a partition of the tree into edge-disjoint terminal-to-terminal paths that minimizes the weight of the longest path. In this paper, we present an $O({\mid}V{\mid}^2$time algorithm to find a minimum terminal path decomposition of trees. The algorithm reduces the given optimization problem to the binary search using the corresponding decision problem, the problem to decide whether the cost of a minimum terminal path decomposition is at most l. This decision problem is solved by dynamic programing in a single traversal of the tree.

A $CST^+$ Tree Index Structure for Range Search (범위 검색을 위한 $CST^+$ 트리 인덱스 구조)

  • Lee, Jae-Won;Kang, Dae-Hee;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.17-28
    • /
    • 2008
  • Recently, main memory access is a performance bottleneck for many computer applications. Cache memory is introduced in order to reduce memory access latency. However, it is possible for cache memory to reduce memory access latency, when desired data are located on cache. EST tree is proposed to solve this problem by improving T tree. However, when doing a range search, EST tree has to search unnecessary nodes. Therefore, this paper proposes $CST^+$ tree which has the merit of CST tree and is possible to do a range search by linking data nodes with linked lists. By experiments, we show that $CST^+$ is $4{\sim}10$ times as fast as CST and $CSB^+$. In addition, rebuilding an index Is an essential step for the database recovery from system failure. In this paper, we propose a fast tree index rebuilding algorithm called MaxPL. MaxPL has no node-split overhead and employs a parallelism for reading the data records and inserting the keys into the index. We show that MaxPL is $2{\sim}11$ times as fast as sequential insert and batch insert.

An approximate approach for Computing Fault-tree probabilities (Fault-tree 확률계산을 위한 근사적 방법)

  • Lee, Geun-Hui;Lee, Dong-Hyeong
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.25-32
    • /
    • 1990
  • This paper presents an approximate algorithm for computing Fault-tree probabilities. The method is essentially composed of three steps. In the first step, a Fault-tree is converted into a network form. In the second step, We change the network into a parallelized diagram. In the third step, the approximate fault-tree probability is calculated from the parallelized diagram. In this paper, in order to verify the method two hypothetical Fault-tree is used by examples. The results show that the method is very useful, even though it is an approximate technique, since it needs not to search the minimal cut sets and has the simple computing rontines.

  • PDF

Efficient Integrity Checking using Hashed B-Tree Index (Hashed B-트리 인덱스를 이용한 효율적인 무결성 검사)

  • Park, Sun-Seob;Jeong, Jae-Mok;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.216-226
    • /
    • 2000
  • This paper suggests a new access path, hashed B-tree which is an efficient access method for integrity checking. Hashed B-tree is based on the observation that most query patterns in enforcing integrity constraints are point queries. Hashed B-tree compresses the key by hashing procedure, which reduces the height of tree and results in fast node search. This method has the advantages such as it can be implemented easily and use the B-tree concurrency control and recovery algorithm with minor modifications.

  • PDF