• Title/Summary/Keyword: tree growth response

Search Result 2, Processing Time 0.066 seconds

Growth Response of Pinus densiflora to Hydrologic Conditions in the Central Korea (수문 요인에 대한 중부 지역 소나무의 생장 반응)

  • Kim, Je-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.66-71
    • /
    • 1999
  • Main concern is to figure out the growth response of Pinus densiflora to hydrologic conditions in the central Korea. Continuous measurements were carried out with six trees with dendrometers in the Chungbuk National University experimental forest (Wolak-san) during 1995~1996. Surrounding hydrological conditions reflected by the solar radiation, air temperature, precipitation, soil water were included in measurements. Their effects on the biological response of trees was investigated and expressed as response functions. With these response functions, tree growth model was developed. Soil water availability was more related to the tree growth than air temperature. Limited number of biological measurements with dendrometer could permit determination of dynamics of radial tree growth to the hydrological conditions. Tree growth model could be used to check and revise the statistical transfer function of dendrohydrology.

  • PDF

Thinning Intensity and Growth Response in a Quercus acuta Stand (붉가시나무림의 솎아베기 강도에 따른 생장 반응 효과)

  • Jung, Su Young;Ju, Nam Gyu;Lee, Kwang Soo;Yoo, Byung Oh;Park, Yong Bae;Yoo, Seok Bong;Park, Joon Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.536-542
    • /
    • 2015
  • This study was examined for the growth response of tree diameter and volume to thinning treatments from different thinning intensities using three long-term thinning trials for Japanese Evergreen Oak (Quercus acuta Thunb.) stands in Wando island, Korea. After thinning in 1999, annual tree growth of diameter and volume was highest in heavy thinned stands for individual tree and this growth pattern of thinning response showed similar tendency to the individual tree growth response in light thinned stands. By increasing diameter growth, the value of H/D ratio (HDR) as an indicator of stem form was properly decreased and improved up to 80%. Although there is significant growth response of basal area in both heavily and lightly thinned stands, the growth potential both of heavily and lightly thinned stands in total stand volume is not likely to reach at the level of unthinned stands because of basal area growth loss associated with both light and heavy thinnings.