• Title/Summary/Keyword: tree classification method

Search Result 361, Processing Time 0.026 seconds

Detection of Individual Tree Species Using Object-Based Classification Method with Unmanned Aerial Vehicle (UAV) Imagery

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • This study was performed to construct tree species classification map according to three information types (spectral information, texture information, and spectral and texture information) by altitude (30 m, 60 m, 90 m) using the unmanned aerial vehicle images and the object-based classification method, and to evaluate the concordance rate through field survey data. The object-based, optimal weighted values by altitude were 176 for 30 m images, 111 for 60 m images, and 108 for 90 m images in the case of Scale while 0.4/0.6, 0.5/0.5, in the case of the shape/color and compactness/smoothness respectively regardless of the altitude. The overall accuracy according to the type of information by altitude, the information on spectral and texture information was about 88% in the case of 30 m and the spectral information was about 98% and about 86% in the case of 60 m and 90 m respectively showing the highest rates. The concordance rate with the field survey data per tree species was the highest with about 92% in the case of Pinus densiflora at 30 m, about 100% in the case of Prunus sargentii Rehder tree at 60 m, and about 89% in the case of Robinia pseudoacacia L. at 90 m.

Typical Classification of Rural Area Considering Settlement Environment by Decision Tree Method (정주여건을 고려한 의사결정나무기법 활용 농촌지역 유형화)

  • Bae, Seung-Jong;Kim, Dae-Sik;Eun, Sang-Kyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.79-92
    • /
    • 2016
  • The objective of this study is to classify the types of rural areas (138 $si{\cdot}gun$) considering settlement environment by Decision Tree Method (CHAID). The CHAID method was used for decision tree algorithm and the seven dependant variables and 5 explanatory variables were selected, respectively. By decision tree method, rural areas were finally classified into six groups through three separate processes. City area, lower area in aging rate and higher area in farmland area ratio was analyzed to be relatively rich rather than other area in the case of settlement environment index. In the future, this study will be able to utilize as a reference to the planning of rural development projects.

An Application of Decision Tree Method for Fault Diagnosis of Induction Motors

  • Tran, Van Tung;Yang, Bo-Suk;Oh, Myung-Suck
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.54-59
    • /
    • 2006
  • Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine learning, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for these data.

  • PDF

The Generation of Test Case Flow Using Classification Tree Method and Functional Analysis for River Crossing of Wheeled-Vehicle (분류트리기법(CTM)과 기능분석을 활용한 차륜형 전투차량 수상운행 테스트 케이스 플로우 생성에 관한 연구)

  • Lee, In Ho;Lee, Cheol Woo;Park, Tae Woo;Nam, Hae Sung;Kang, Ho Sin;Kim, Eui Whan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2014
  • Designing test case flows for water crossing operation of a wheeled vehicle is a new attempt for which very limited experiences exist. In this paper, a Function Flow Block Diagram(FFBD) and a Classification Tree Method(CTM) were combined to see if this method is viable to generate the test case flows at the functional analysis stage. It was found that this method can be practically used for the very complicated test case generation.

Classification Tree-Based Feature-Selective Clustering Analysis: Case of Credit Card Customer Segmentation (분류나무를 활용한 군집분석의 입력특성 선택: 신용카드 고객세분화 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • Clustering analysis is used in various fields including customer segmentation and clustering methods such as k-means are actively applied in the credit card customer segmentation. In this paper, we summarized the input features selection method of k-means clustering for the case of the credit card customer segmentation problem, and evaluated its feasibility through the analysis results. By using the label values of k-means clustering results as target features of a decision tree classification, we composed a method for prioritizing input features using the information gain of the branch. It is not easy to determine effectiveness with the clustering effectiveness index, but in the case of the CH index, cluster effectiveness is improved evidently in the method presented in this paper compared to the case of randomly determining priorities. The suggested method can be used for effectiveness of actively used clustering analysis including k-means method.

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

A study on data mining techniques for soil classification methods using cone penetration test results

  • Junghee Park;So-Hyun Cho;Jong-Sub Lee;Hyun-Ki Kim
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.67-80
    • /
    • 2023
  • Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.

The study on Decision Tree method to improve land cover classification accuracy of Hyperspectral Image (초분광영상의 토지피복분류 정확도 향상을 위한 Decision Tree 기법 연구)

  • SEO, Jin-Jae;CHO, Gi-Sung;SONG, Jang-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • Hyperspectral image is more increasing spectral resolution that Multi-spectral image. Because of that, each pixel of the hyperspectral image includes much more information and it is considered the most appropriate technic for land cover classification. but recent research of hyperspectral image is stayed land cover classification of general level. therefore we classified land cover of detail level using ED, SAM, SSS method and made Decision Tree from result of that. As a result, the overall accuracy of general level was improved by 1.68% and the overall accuracy of detail level was improved by 5.56%.

Game Traffic Classification Using Statistical Characteristics at the Transport Layer

  • Han, Young-Tae;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.22-32
    • /
    • 2010
  • The pervasive game environments have activated explosive growth of the Internet over recent decades. Thus, understanding Internet traffic characteristics and precise classification have become important issues in network management, resource provisioning, and game application development. Naturally, much attention has been given to analyzing and modeling game traffic. Little research, however, has been undertaken on the classification of game traffic. In this paper, we perform an interpretive traffic analysis of popular game applications at the transport layer and propose a new classification method based on a simple decision tree, called an alternative decision tree (ADT), which utilizes the statistical traffic characteristics of game applications. Experimental results show that ADT precisely classifies game traffic from other application traffic types with limited traffic features and a small number of packets, while maintaining low complexity by utilizing a simple decision tree.

Development of the forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data

  • Sasakawa, Hiroshi;Tsuyuki, Satoshi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.467-469
    • /
    • 2003
  • This research aimed to develop forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data. QuickBird data was used as satellite data. The method of this research was to extract satellite data for every single tree crown using image segmentation technique, then to evaluate the accuracy of classification by changing grouping criteria such as tree species, families, coniferous or broad-leaved species, and timber prices. As a result, the classification of tree species and families level was inaccurate, on the other hand, coniferous or broad-leaved species and timber price level was high accurate.

  • PDF