• Title/Summary/Keyword: tree classification method

Search Result 361, Processing Time 0.027 seconds

Characterizing Patterns of Experience of Harmful Shops among Adolescents Using Decision Tree Models (데이터마이닝을 이용한 청소년 유해업소 출입경험에 영향을 주는 요인)

  • Sohn, Aeree
    • Korean Journal of Health Education and Promotion
    • /
    • v.31 no.3
    • /
    • pp.15-26
    • /
    • 2014
  • Objective: This study was conducted in order to explore the predictive model of the experience of harmful shops in middle and high school students. Methods: The survey was conducted using a self-administered questionnaire method online via the homepage of the education ministry's student health information center. Participants were 1,888 middle school students and 1,563 high school students from 107 schools in Korea. The collected data were processed using the SPSS classification trees 18.0 program and examined using data mining decision tree model. Results: In this study, 6.9% of all subjects were found to have been to sex industry harmful place and 81.8% game place. The results revealed that smoking, living with parents, and school grade were significant predictors for experience of sex industry harmful place. The perception of study disrupts, drinking, living with parents, stress, and satisfaction of school life were significant predictors for experience of game harmful place. Conclusions: These results suggest that an educational approach should be developed by tailored conditions to prevent the access to harmful shops.

Prediction of Break Indices in Korean Read Speech (국어 낭독체 발화의 운율경계 예측)

  • Kim Hyo Sook;Kim Chung Won;Kim Sun Ju;Kim Seoncheol;Kim Sam Jin;Kwon Chul Hong
    • MALSORI
    • /
    • no.43
    • /
    • pp.1-9
    • /
    • 2002
  • This study aims to model Korean prosodic phrasing using CART(classification and regression tree) method. Our data are limited to Korean read speech. We used 400 sentences made up of editorials, essays, novels and news scripts. Professional radio actress read 400sentences for about two hours. We used K-ToBI transcription system. For technical reason, original break indices 1,2 are merged into AP. Differ from original K-ToBI, we have three break index Zero, AP and IP. Linguistic information selected for this study is as follows: the number of syllables in ‘Eojeol’, the location of ‘Eojeol’ in sentence and part-of-speech(POS) of adjacent ‘Eojeol’s. We trained CART tree using above information as variables. Average accuracy of predicting NonIP(Zero and AP) and IP was 90.4% in training data and 88.5% in test data. Average prediction accuracy of Zero and AP was 79.7% in training data and 78.7% in test data.

  • PDF

Intelligent On-demand Routing Protocol for Ad Hoc Network

  • Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1113-1128
    • /
    • 2020
  • Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.

CNN-based Fast Split Mode Decision Algorithm for Versatile Video Coding (VVC) Inter Prediction

  • Yeo, Woon-Ha;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.147-158
    • /
    • 2021
  • Versatile Video Coding (VVC) is the latest video coding standard developed by Joint Video Exploration Team (JVET). In VVC, the quadtree plus multi-type tree (QT+MTT) structure of coding unit (CU) partition is adopted, and its computational complexity is considerably high due to the brute-force search for recursive rate-distortion (RD) optimization. In this paper, we aim to reduce the time complexity of inter-picture prediction mode since the inter prediction accounts for a large portion of the total encoding time. The problem can be defined as classifying the split mode of each CU. To classify the split mode effectively, a novel convolutional neural network (CNN) called multi-level tree (MLT-CNN) architecture is introduced. For boosting classification performance, we utilize additional information including inter-picture information while training the CNN. The overall algorithm including the MLT-CNN inference process is implemented on VVC Test Model (VTM) 11.0. The CUs of size 128×128 can be the inputs of the CNN. The sequences are encoded at the random access (RA) configuration with five QP values {22, 27, 32, 37, 42}. The experimental results show that the proposed algorithm can reduce the computational complexity by 11.53% on average, and 26.14% for the maximum with an average 1.01% of the increase in Bjøntegaard delta bit rate (BDBR). Especially, the proposed method shows higher performance on the sequences of the A and B classes, reducing 9.81%~26.14% of encoding time with 0.95%~3.28% of the BDBR increase.

Annotation Method for Reliable Video Data (신뢰성 영상자료를 위한 어노테이션 기법)

  • Yun-Hee Kang;Taeun Kwon
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • With the recent increase in the use of artificial intelligence, AI TRiSM data management within organizations has become important, and thus securing data reliability has emerged as an essential requirement for data-based decision-making. Digital content is transmitted through the unreliable Internet to the cloud where the digital content storage is located, then used in various applications. When detecting anomaly of data, it is difficult to provide a function to check content modification due to its damage in digital content systems. In this paper, we design a technique to guarantee the reliability of video data by expanding the function of data annotation. The designed annotation technique constitutes a prototype based on gRPC to handle a request and a response in a webUI that generates classification label and Merkle tree of given video data.

  • PDF

Studies on the Structure of the Forest Community in Mt. Sokri(I) - The Conservation Planning of Pinus densiflora Community - (속리산 삼림군집구조에 관한 연구(I) -소나무림 보존계획-)

  • 이경재;임경빈;조재창;류창희
    • Korean Journal of Environment and Ecology
    • /
    • v.4 no.1
    • /
    • pp.23-32
    • /
    • 1990
  • To investigate the structure of the pine forest community and the conservation of pine forest in Mt. Sokri, twenty plots of 500$m^2$ size set up by the clumped sampling method. The classification by TWINSPAN and DCA ordination were applied to the study area in order to classify them into several groups based on environmental variables. The plant community was not classified into several groups by above methods in this study area. The successional trends of tree species by both techniques seem to be from Pinus densiflora through Quercus serrata, Fraxinus sieboldiana, Q. aliena, Sorbus alnifolia, Prunus sargentii to Carpinus laxiflora, C. cordata in the canopy layer. and from Rhus trichocarpa, Lindera obtusiloba through Styrax obassia, Acer pseudosieboldiana, Symplocos chinensis for. pilosa to L. erythrocarpa, Viburnum erosum in the understory layer. Pinus densiflora community shall be conserved by the disclimax method, i. e. the broadleaf vegetation in the underlayer of the pine community should be cleared out.

  • PDF

Establishment of WBS·CBS-based Construction Information Classification System for Efficient Construction Cost Analysis and Prediction of High-tech Facilities (하이테크 공장의 효율적 건설 사업비 분석 및 예측을 위한 WBS·CBS 기반 건설정보 분류체계 구축)

  • Choi, Seong Hoon;Kim, Jinchul;Kwon, Soonwook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.356-366
    • /
    • 2021
  • The high-tech industry, a leader in the national economy, has a larger investment cost compared to general buildings, a shorter construction period, and requires continuous investment. Therefore, accurate construction cost prediction and quick decision-making are important factors for efficient cost and process management. Overseas, the construction information classification system has been standardized since 1980 and has been continuously developed, improving construction productivity by systematically collecting and utilizing project life cycle information. At domestic construction sites, attempts have been made to standardize the classification system of construction information, but it is difficult to achieve continuous standardization and systematization due to the absence of a standardization body and differences in cost and process management methods for each construction company. Particular, in the case of the high-tech industry, the standardization and systematization level of the construction information classification system for high-tech facility construction is very low due to problems such as large scale, numerous types of work, complex construction and security. Therefore, the purpose of this study is to construct a construction information classification system suitable for high-tech facility construction through collection, classification, and analysis of related project data constructed in Korea. Based on the WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) classified and analyzed through this study, a code system through hierarchical classification was proposed, and the cost model of buildings by linking WBS and CBS was three-dimensionalized and the utilized method was presented. Through this, an information classification system based on inter-relationships can be developed beyond the one-way tree structure, which is a general construction information classification system, and effects such as shortening of construction period and cost reduction will be maximized.

A Performance Improvement Method using Variable Break in Corpus Based Japanese Text-to-Speech System (가변 Break를 이용한 코퍼스 기반 일본어 음성 합성기의 성능 향상 방법)

  • Na, Deok-Su;Min, So-Yeon;Lee, Jong-Seok;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • In text-to-speech systems, the conversion of text into prosodic parameters is necessarily composed of three steps. These are the placement of prosodic boundaries. the determination of segmental durations, and the specification of fundamental frequency contours. Prosodic boundaries. as the most important and basic parameter. affect the estimation of durations and fundamental frequency. Break prediction is an important step in text-to-speech systems as break indices (BIs) have a great influence on how to correctly represent prosodic phrase boundaries, However. an accurate prediction is difficult since BIs are often chosen according to the meaning of a sentence or the reading style of the speaker. In Japanese, the prediction of an accentual phrase boundary (APB) and major phrase boundary (MPB) is particularly difficult. Thus, this paper presents a method to complement the prediction errors of an APB and MPB. First, we define a subtle BI in which it is difficult to decide between an APB and MPB clearly as a variable break (VB), and an explicit BI as a fixed break (FB). The VB is chosen using the classification and regression tree, and multiple prosodic targets in relation to the pith and duration are then generated. Finally. unit-selection is conducted using multiple prosodic targets. In the MOS test result. the original speech scored a 4,99. while proposed method scored a 4.25 and conventional method scored a 4.01. The experimental results show that the proposed method improves the naturalness of synthesized speech.

Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM (쉴드 TBM 디스크 커터 교체 유무 판단을 위한 머신러닝 분류기법 성능 비교)

  • Kim, Yunhee;Hong, Jiyeon;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • In recent years, Shield TBM construction has been continuously increasing in domestic tunnels. The main excavation tool in the shield TBM construction is a disc cutter which naturally wears during the excavation process and significantly degrades the excavation efficiency. Therefore, it is important to know the appropriate time of the disc cutter replacement. In this study, it is proposed a predictive model that can determine yes/no of disc cutter replacement using machine learning algorithm. To do this, the shield TBM machine data which is highly correlated to the disc cutter wears and the disc cutter replacement from the shield TBM field which is already constructed are used as the input data in the model. Also, the algorithms used in the study were the support vector machine, k-nearest neighbor algorithm, and decision tree algorithm are all classification methods used in machine learning. In order to construct an optimal predictive model and to evaluate the performance of the model, the classification performance evaluation index was compared and analyzed.

Objective Classification of Fog Type and Analysis of Fog Characteristics Using Visibility Meter and Satellite Observation Data over South Korea (시정계와 위성 관측 자료를 활용한 남한 안개의 객관적인 유형 분류와 특성 분석)

  • Lee, Hyun-Kyoung;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.639-658
    • /
    • 2019
  • The classification of fog type and the characteristics of fog based on fog events over South Korea were investigated using a 3-year (2015~2017) visibility meter data. One-minute visibility meter data were used to identify fog with present weather codes and surface observation data. The concept of fog events was adopted for the better definition of fog properties and more objective classification through the detailed investigation of life cycle of fog. Decision tree method was used to classify the fog types and the final fog types were radiation fog, advection fog, precipitation fog, cloud base lowering fog and morning evaporation fog. We enhanced objectivity in classifying the types of fog by adding the satellite and the buoy observations to the conventional usage of AWS and ceilometer data. Radiation fog, the most common type in South Korea, frequently occurs in inland during autumn. A considerable number of advection fogs occur in island area in summer, especially in July. Precipitation fog accounts for more than a quarter of the total fog events and frequently occurs in islands and coastal areas. Cloud base lowering fog, classified using ceilometer, occurs occasionally for all areas but the occurrence rate is relatively high in east and west coastal area. Morning evaporation fog type is rarely observed in inland. The occurrence rate of thick fog with visibility less than 100 meters is amount to 21% of total fog events. Although advection fog develops into thick fog frequently, radiation fog shows the minimum visibility, in some cases.