Yumi Lee;Sejin Oh;Seong-Wook Kang;Chang-Hyun Choi;Jongtae Lee;Seong-Woo Cho
KOREAN JOURNAL OF CROP SCIENCE
/
v.69
no.2
/
pp.111-122
/
2024
This study was conducted to evaluate agronomic traits and classify phylogenetic characteristics of Korean wheat landraces (KWLs) collected in Gyeongnam province. We used the squash method for chromosome observation, image analysis to examine seed characteristics, and genotyping using commercial single-nucleotide polymorphism chips to construct a phylogenetic tree. All KWLs contained 42 chromosomes and two pairs of microsatellites as observed in Keumgang, a Korean wheat cultivar. All KWLs showed smaller seed traits compared with those of Keumgang, although KWL-3 had a larger embryo length than that of Keumgang. Among agronomic traits compared with those of Keumgang, all KWLs had a late heading date and ripening period except for KWL-3, which showed the smallest culm and spike length. KWL-1 had the lowest tiller, highest floret, and grain number. All KWLs showed a lower thousand grain weight than that of Keumgang because of their smaller seeds. In the variation of variety and area, the heading date, ripening period, tiller number, and floret number were affected by the cultivation area, whereas the culm length, spike length, and 1000 grain weight were affected by the variety. Correlation distribution analysis showed differences in agronomic traits according to the cultivation area, and the heading date was positively correlated with the culm length and floret number in three cultivation areas. Principal component analysis explained that the heading date had a positive relationship with the ripening period and floret number and a negative relationship with the tiller number. Principal component analysis also revealed that all KWLs had a lower thousand grain weight than that of Keumgang. Phylogenetic tree showed that KWL-1 was near KWL-3, while KWL-2 was near KWL-4. All KWLs were genetically near the Korean wheat cultivars milsung and saeol, whereas they were genetically far from the Korean wheat cultivars goso and olgrue.
We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.
In this study, we implemented landslide distribution of Jeju Island using ANN and GIS, respectively. To do this, we first get the counter line from 1:2,5000 digital map and use this counter line to make the DEM. for the evaluate the land slide susceptibility. Next, we abstracted slop map and aspect map from the DEM and get the land use map using ISODATA classification method from Landsat 7 images. In the computation processes of landslide analysis, we make the class to the soil map, tree diameter map, Isohyet map, geological map and so on. Finally, we applied the ANN method to the landslide one and calculated its weighted values. GIS results can be calculated by using Acrview program and produced Jeju landslide susceptibility map by usign Weighted Overlay method. Based on our results, we found the relatively weak points of landslide ware concentrated to the top of Halla mountains.
Purpose: The goal of this study was to evaluate the impact of life style characteristics on the prevalence risk of metabolic syndrome (MS). Methods: A total of 581 adults were recruited from a cardiovascular outpatient clinic. A newly developed comprehensive life style evaluation tool for MS patients was used, and patient data related to the MS diagnosis were reviewed from the hospital records. Results: The overall prevalence of MS was 53.2%, and the mean of MS score was 2.6 for patients at a cardiovascular outpatient clinic (78% of the patients had hypertension). Dietary habits among the life style characteristics had significant influence on the prevalence risk of MS and MS scores. And also interestingly, the classification and regression tree (CART) model suggested that the high prevalence risk groups for MS were older adults (61.5$\leq$age<79.4), and adults between 48.5 and 61.5 yr of age with bad dietary habits. Conclusion: This study indicates that nurses should focus on dietary habits of patients (especially patients classified as high prevalence risk for MS) for improvement and prevention of MS prevalence risk.
To investigate the forest structure and to suggest the management of vegetation landscape in Noinbong area, Pdaesan National Pa, twelve plots were set up and surveyed. According to the acalysis of classification by TWINSPAN, the community was divided by two groups of Carpinus laxiflora - Quercus mongolica community and the other is Betula costata - schmidtii - C. laxiflora community. It was found out that the successional stage of Noinbong forests was climax and introduced-climax by the analysis of species structure, similarity index and species diversity. The number of individuals was about 120~130 and species was 17 per 100m$^{2}$. Through the analysis of basal area and DBH class distribution, it was estimated that C. laxiflora, B. costata, and B. schmidtii will be clmax species instead of Q. mongolica in tree layer, and in the subtree layer, Acer pseudo-sieboldianum will be dominant species.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.41-44
/
1999
본 논문에서는 PC 응용을 위한 고음질의 한국어 text-to-speech(TTS) 합성 시스템을 개발하였다. 개발된 시스템의 합성방식으로는 음의 고저 조절, 인접음 사이의 연결 처리 및 음색제어 등에서 기존의 PSOLA 방식에 비해 장점을 가지는 정현파 모델 기반의 방식을 채택하였고, 자연스러운 운율 모델링을 위하여 통계적 기법중의 하나인 Classification and regression tree(CART) 방법을 사용하였다. 또한 음소 경계의 불연속성 문제를 줄이기 위한 합성단위로 초성-중성 및 종성 단위를 사용하였고, 다양한 음색표현이 가능하도록 음색제어 기능을 갖추었다. 그리고, 표준 Speech Application Program Interface(SAPI)를 준용한 TTS engine 형태로 구현함으로써 PC 상에서의 응용 프로그램 개발 편의성을 높였다. 합성음의 청취평가 결과 음질의 우수성 및 음색제어 기능의 유효성을 확인할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.8
/
pp.3806-3825
/
2016
This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.
The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
/
v.27
no.4
/
pp.19-28
/
2016
최근 RFID와 같은 무선 센싱 네트워크 기술과 객체 추적을 위한 센싱 디바이스 및 다양한 컴퓨팅 자원들이 빠르게 발전함에 따라, 기존 웹의 형태는 소셜 웹에서 유비쿼터스 컴퓨팅 웹으로 자연스럽게 진화되고 있다. 유비쿼터스 컴퓨팅 웹에서 사물인터넷(IoT)은 기존의 컴퓨터를 대체할 수 있는데, 이것은 곧 한 사람과 주변 사물들 간에 연결되는 네트워크가 확장되는 것과 동시에 네트워크 안에서 생성되는 데이터의 수가 기하급수적으로 증가되는 것을 의미한다. 따라서 보다 지능적인 IoT 서비스를 위해서는, 수많은 미가공 데이터들 사이에서 사람의 의도와 상황을 실시간으로 정확히 파악할 수 있어야 한다. 이때 사물과의 상호작용을 위한 동작 인식 기술(Gesture recognition)은 집적적인 접촉을 필요로 하지 않기 때문에, 미래의 사람-사물 간 상호작용에 응용될 수 있는 잠재력을 갖고 있다. 한편, 기계학습 분야의 최신 알고리즘들은 다양한 문제에서 사람의 인지능력을 종종 뛰어넘는 성능을 보이고 있는데, 그 중에서도 의사결정나무(Decision Tree)를 기반으로 한 Decision Forest는 분류(Classification)와 회귀(Regression)를 포함한 전 영역에 걸쳐 우월한 성능을 보이고 있다. 따라서 본 논문에서는 지능형 IoT 서비스를 위한 다양한 동작 인식 기술들을 알아보고, 동작 인식을 위한 Decision Forest의 기본 개념과 구현을 위한 학습, 테스팅에 대해 구체적으로 소개한다. 특히 대표적으로 사용되는 3가지 학습방법인 배깅(Bagging), 부스팅(Boosting) 그리고 Random Forest에 대해 소개하고, 이것들이 동작 인식을 위해 어떠한 특징을 갖는지 기존의 연구결과를 토대로 알아보았다.
Journal of the Korean Society of Environmental Restoration Technology
/
v.7
no.5
/
pp.38-46
/
2004
This study was carried out to analyze forest vegetation in Seodaesan of Geumsan, Chungnam Province. Employing the releve method of Braun-Blanquet and quadrat method, 36 plots were sampled in forest of Seodaesan. The sub-communities were classified into Pinus densiflora, Acer pseudosieboldianum, and Carpinus laxiflora sub-community of Quercus mongolica community. The importance values were 77.07 in Quercus mongolica, 40.79 in Pinus densiflora, 17.03 Fraxinus rhynchophylla, 14.06 in Fraxinus sieboldiana, 13.99 in Quercus serrata, 12.93 Acer pseudosiebotdianum. Coverage rate was 84.6% in tree layer, 52.8% in subtree layer, 29.1% in shrub layer, 27.9% in herb layer, respectively. Most of the DBH of Quercus mongolica and Pinus densiflora was between 5cm and 20cm. Therefore, Quercus mongolica and Pinus densiflora might be dominant species in the study area for several decades. Acer pseudosieboldianum and Carpinus laxiflora sub-communities were distributed mainly in a high-altitude and northern and north-western area. Pinus densiflora sub-community was distributed mainly in a low-altitude and western area.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.05a
/
pp.309-320
/
2007
The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. It causes low prediction accuracy of the minority class because classifiers tend to assign instances to major classes and ignore the minor class to reduce overall misclassification rate. In order to solve the data imbalance problem, there has been proposed a number of techniques based on resampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.