• Title/Summary/Keyword: tree based learning

Search Result 435, Processing Time 0.025 seconds

Machine Learning-Based Prediction Technology for Medical Treatment Period of Automobile Insurance Accident Patients (머신러닝 기반의 자동차보험 사고 환자의 진료 기간 예측 기술)

  • Kyung-Keun Byun;Doeg-Gyu Lee;Hyung-Dong Lee
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2023
  • In order to help reduce the medical expenses of patients with auto insurance accidents, this study predicted the treatment period, which is the most important factor in the medical expenses of patients in their 40s and 50s, and analyzed the factors affecting the treatment period. To this end, a mechine learning model using five algorithms such as Decision Tree was created, and its performance was compared and analyzed between models. There were three algorithms that showed good performance including Decison Tree, Gradient Boost, and XGBoost. In addition, as a result of analyzing the factors affecting the prediction of the treatment period, the type of hospital, the treatment area, age, and gender were found. Through these studies, easy research methods such as the use of AutoML were presented, and we hope that the results of this study will help policies to reduce medical expenses for automobile insurance accidents.

Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space (특징공간을 사선 분할하는 퍼지 결정트리 유도)

  • Lee, Woo-Hang;Lee, Keon-Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.156-166
    • /
    • 2002
  • Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.

Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data (머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로)

  • Yoon, Yanghyun;Kim, Taekyung;Kim, Suyeong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.229-249
    • /
    • 2022
  • This paper investigates machine learning models for predicting the designation of administrative issues in the KOSDAQ market through various techniques. When a company in the Korean stock market is designated as administrative issue, the market recognizes the event itself as negative information, causing losses to the company and investors. The purpose of this study is to evaluate alternative methods for developing a artificial intelligence service to examine a possibility to the designation of administrative issues early through the financial ratio of companies and to help investors manage portfolio risks. In this study, the independent variables used 21 financial ratios representing profitability, stability, activity, and growth. From 2011 to 2020, when K-IFRS was applied, financial data of companies in administrative issues and non-administrative issues stocks are sampled. Logistic regression analysis, decision tree, support vector machine, random forest, and LightGBM are used to predict the designation of administrative issues. According to the results of analysis, LightGBM with 82.73% classification accuracy is the best prediction model, and the prediction model with the lowest classification accuracy is a decision tree with 71.94% accuracy. As a result of checking the top three variables of the importance of variables in the decision tree-based learning model, the financial variables common in each model are ROE(Net profit) and Capital stock turnover ratio, which are relatively important variables in designating administrative issues. In general, it is confirmed that the learning model using the ensemble had higher predictive performance than the single learning model.

Re-anonymization Technique for Dynamic Data Using Decision Tree Based Machine Learning (결정트리 기반의 기계학습을 이용한 동적 데이터에 대한 재익명화기법)

  • Kim, Young Ki;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In recent years, new technologies such as Internet of Things, Cloud Computing and Big Data are being widely used. And the type and amount of data is dramatically increasing. This makes security an important issue. In terms of leakage of sensitive personal information. In order to protect confidential information, a method called anonymization is used to remove personal identification elements or to substitute the data to some symbols before distributing and sharing the data. However, the existing method performs anonymization by generalizing the level of quasi-identifier hierarchical. It requires a higher level of generalization in case where k-anonymity is not satisfied since records in data table are either added or removed. Loss of information is inevitable from the process, which is one of the factors hindering the utility of data. In this paper, we propose a novel anonymization technique using decision tree based machine learning to improve the utility of data by minimizing the loss of information.

Forest Change Detection Service Based on Artificial Intelligence Learning Data (인공지능 학습용 데이터 기반의 산림변화탐지 서비스)

  • Chung, Hankun;Kim, Jong-in;Ko, Sun Young;Chai, Seunggi;Shin, Youngtae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.347-354
    • /
    • 2022
  • Since the era of the 4th industrial revolution has been ripe, the use of artificial intelligence(AI) based on massive data is beginning to be actively applied in various fields. However, as the process of analyzing forest species is carried out manually, many errors are occurring. Therefore, in this paper, about 60,000 pieces of AI learning data were automatically analyzed for pine, larch, conifer, and broadleaf trees of aerial photographs and pseudo images in the metropolitan area, and an AI model was developed to distinguish tree species. Through this, it is expected to increase in work efficiency by using the tree species division image as basic data when producing forest change detection and forest field topics.

A Study on Time Series Cross-Validation Techniques for Enhancing the Accuracy of Reservoir Water Level Prediction Using Automated Machine Learning TPOT (자동기계학습 TPOT 기반 저수위 예측 정확도 향상을 위한 시계열 교차검증 기법 연구)

  • Bae, Joo-Hyun;Park, Woon-Ji;Lee, Seoro;Park, Tae-Seon;Park, Sang-Bin;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This study assessed the efficacy of improving the accuracy of reservoir water level prediction models by employing automated machine learning models and efficient cross-validation methods for time-series data. Considering the inherent complexity and non-linearity of time-series data related to reservoir water levels, we proposed an optimized approach for model selection and training. The performance of twelve models was evaluated for the Obong Reservoir in Gangneung, Gangwon Province, using the TPOT (Tree-based Pipeline Optimization Tool) and four cross-validation methods, which led to the determination of the optimal pipeline model. The pipeline model consisting of Extra Tree, Stacking Ridge Regression, and Simple Ridge Regression showed outstanding predictive performance for both training and test data, with an R2 (Coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) exceeding 0.93. On the other hand, for predictions of water levels 12 hours later, the pipeline model selected through time-series split cross-validation accurately captured the change pattern of time-series water level data during the test period, with an NSE exceeding 0.99. The methodology proposed in this study is expected to greatly contribute to the efficient generation of reservoir water level predictions in regions with high rainfall variability.

Splitting Decision Tree Nodes with Multiple Target Variables (의사결정나무에서 다중 목표변수를 고려한)

  • 김성준
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.243-246
    • /
    • 2003
  • Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields Classifying a group into subgroups is one of the most important subjects in data mining Tree-based methods, known as decision trees, provide an efficient way to finding classification models. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variables should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present several methods for measuring the node impurity, which are applicable to data sets with multiple target variables. For illustrations, numerical examples are given with discussion.

  • PDF

An Attribute Weighting Approach for Naive Bayesian based on Very Fast Decision Tree (Very Fast Decision Tree 기반 Naive Bayesian 알고리즘의 Weight 부여 기법)

  • Kim, Se-Jun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.139-140
    • /
    • 2018
  • 본 논문에서는 지도 기계 학습 알고리즘 중 하나인 Naive Bayesian (NB) 알고리즘의 데이터 분류 정확도를 향상시키기 위하여 데이터 속성에 Weight를 부여하는 새로운 기법을 제안하였다. 기존에 Decision Tree(DT) 알고리즘의 깊이를 이용하여 Weigth를 부여하는 방법이 제안되었으나, DT를 구축하는데 오버헤드가 크기 때문에 데이터의 실시간 분석이나 자원 제한적인 환경에서의 적용은 어렵다는 단점이 있다. 이를 해결하기 위하여 본 논문에서는 최소한의 데이터를 사용하여 신속하게 DT를 구축하는 Very Fast Decision Tree (VFDT) 알고리즘 기반의 Weight 부여 기법을 제안함으로써 적은 오버헤드로 NB의 정확도를 향상시킨다.

  • PDF

Method and Case Study of Decision Tree for Content Design Education (콘텐츠 디자인교육을 위한 의사 결정 트리 활용 방법과 사례연구)

  • Kim, Sungkon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • In order to overcome the students' lack of information and experience, we developed a content planning tree that utilizes a decision tree. The content planning tree consists of a tree trunk creation step in which students select a theme and a story to develop, a parent branch generation step for selecting a category that can be developed based on the story, a child branch generation step for selecting the interesting "effect" method of producing the content effectively, a leaf generation step for selecting a multimedia expression 'element' to be visualized. The educational model was applied to game planning design and information visualization lectures, and provides examples of the categories, effects, and elements used in each lecture. The model was used for 145 team projects and the efficiency was confirmed by a step-by-step learning process.

Comparative Evaluation of Machine Learning Models for Predicting Soccer Injury Types

  • Davronbek Malikov;Jaeho Kim;Jung Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.257-268
    • /
    • 2024
  • Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.