• Title/Summary/Keyword: tree based learning

Search Result 435, Processing Time 0.027 seconds

A Study on the Development of Fruit Tree Experience Programs Based on User Segmentation

  • Kwon, O Man;Lee, Junga;Jeong, Daeyoung;Lee, Jin Hee
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.865-874
    • /
    • 2018
  • Fruit trees are a key part of agriculture in rural areas and have recently been a part of ecotourism or agrotourism. This study analyzes user segmentation based on user motivation to determine characteristics of potential customers in fruit tree farms, and thereby develop fruit tree experience and educational programs. We conducted a survey of 253 potential customers of fruit tree experience programs in September 2017. Data were evaluated using factor and cluster analyses. The results of the cluster analysis identified four distinct segments based on potential customers' motivations, that is, activity-oriented, learning-oriented, leisure-oriented, and purchase-oriented. These clusters showed that significant differences in the preference of potential customers exist. Different markets were segmented based on the benefits sought by users. The segments' characteristics were identified and activities relevant to each segment were proposed for rural tourism. Lastly, this study suggests directions for development of fruit tree farm experience and educational programs.

Preliminary Design for Preparing a Natural Learning and Experimental Area in Bukchun and Boundary(II) -Determination of Flood Level/Tree Planting, Analysis of Bukchun Scene- (북천지역 자연학습 체험단지 조성을 위한 기본 계획(II) -홍수위 및 식수결정, 북천 경관분석-)

  • 정종현;최석규;조세환
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.13-21
    • /
    • 2002
  • This study analyzed the characteristic of basic river structure, a flood level, the tree planting recommendation and syn thetic design, in order to establish a basic plan for preparing a natural practical area of environmental ecosystem at Bukchun and its surroundings. It was also investigated based on the opinion of citizens, geographical condition and the equipment/utilization examination of Bukchun which were included ecological circumstances, and thus provided a composite item for managing the natural river. This study also considered the development of the river in terms of culture, environment and ecology concept. The results were summarized as followed. Bukchun showed that the speed of a funning fluid is very fast on a period of flood. but very slow in a period of water shortage about 0.02 m/s. To prevent the speed change of a running fluid by a steep slope in a riverbed, there established Dongchun sluice gates under a bridge, including three sluice gates under a bridge, but there occurred extremely a riverbed erosion and corrosion section. The result of comparison between real flood degree and prediction flood data, there should perform a countermeasure the riverbed structure regulation of this area. Also, it was needed an exhaustive flood management in summer. According to the Bukchun and Hyungsangang riverbed investigation, there were needed preparation for natural/practical area and ecology Park development in the future. This study was investigated tree Planting/flower/blossom around the Bukchun and its surroundings. It was recommended willow, Italian poplar, bamboos and cherry blossoms in the Hyungsangang and Bukchun. There exist together historical space, environment space iud have enough possibility both natural learning space and civil rest space. And, it is possible to compose ecology natural learning and experimental area.

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

Classification Model of Food Groups in Food Exchange Table Using Decision Tree-based Machine Learning

  • Kim, Ji Yun;Kim, Jongwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.51-58
    • /
    • 2022
  • In this paper, we propose a decision tree-based machine learning model that leads to food exchange table renewal by classifying food groups through machine learning for existing food and food data found by web crawling. The food exchange table is the standard for food exchange intake when composing a diet such as diet and diet, as well as patients who need nutritional management. The food exchange table, which is the standard for the composition of the diet, takes a lot of manpower and time in the process of revision through the National Health and Nutrition Survey, making it difficult to quickly reflect food changes according to new foods or trends. Since the proposed technique classifies newly added foods based on the existing food group, it is possible to organize a rapid food exchange table reflecting the trend of food. As a result of classifying food into the proposed model in the study, the accuracy of the food group in the food exchange table was 97.45%, so this food classification model is expected to be highly utilized for the composition of a diet that suits your taste in hospitals and nursing homes.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

Accuracy Measurement of Image Processing-Based Artificial Intelligence Models

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.212-220
    • /
    • 2024
  • When a typhoon or natural disaster occurs, a significant number of orchard fruits fall. This has a great impact on the income of farmers. In this paper, we introduce an AI-based method to enhance low-quality raw images. Specifically, we focus on apple images, which are being used as AI training data. In this paper, we utilize both a basic program and an artificial intelligence model to conduct a general image process that determines the number of apples in an apple tree image. Our objective is to evaluate high and low performance based on the close proximity of the result to the actual number. The artificial intelligence models utilized in this study include the Convolutional Neural Network (CNN), VGG16, and RandomForest models, as well as a model utilizing traditional image processing techniques. The study found that 49 red apple fruits out of a total of 87 were identified in the apple tree image, resulting in a 62% hit rate after the general image process. The VGG16 model identified 61, corresponding to 88%, while the RandomForest model identified 32, corresponding to 83%. The CNN model identified 54, resulting in a 95% confirmation rate. Therefore, we aim to select an artificial intelligence model with outstanding performance and use a real-time object separation method employing artificial function and image processing techniques to identify orchard fruits. This application can notably enhance the income and convenience of orchard farmers.

Text Document Categorization using FP-Tree (FP-Tree를 이용한 문서 분류 방법)

  • Park, Yong-Ki;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.984-990
    • /
    • 2007
  • As the amount of electronic documents increases explosively, automatic text categorization methods are needed to identify those of interest. Most methods use machine learning techniques based on a word set. This paper introduces a new method, called FPTC (FP-Tree based Text Classifier). FP-Tree is a data structure used in data-mining. In this paper, a method of storing text sentence patterns in the FP-Tree structure and classifying text using the patterns is presented. In the experiments conducted, we use our algorithm with a #Mutual Information and Entropy# approach to improve performance. We also present an analysis of the algorithm via an ordinary differential categorization method.

A Study on the Use of Machine Learning Models in Bridge on Slab Thickness Prediction (머신러닝 기법을 활용한 교량데이터 설계 시 슬래브두께 예측에 관한 연구)

  • Chul-Seung Hong;Hyo-Kwan Kim;Se-Hee Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2023
  • This paper proposes to apply machine learning to the process of predicting the slab thickness based on the structural analysis results or experience and subjectivity of engineers in the design of bridge data construction to enable digital-based decision-making. This study aims to build a reliable design environment by utilizing machine learning techniques to provide guide values to engineers in addition to structural analysis for slab thickness selection. Based on girder bridges, which account for the largest proportion of bridge data, a prediction model process for predicting slab thickness among superstructures was defined. Various machine learning models (Linear Regress, Decision Tree, Random Forest, and Muliti-layer Perceptron) were competed for each process to produce the prediction value for each process, and the optimal model was derived. Through this study, the applicability of machine learning techniques was confirmed in areas where slab thickness was predicted only through existing structural analysis, and an accuracy of 95.4% was also obtained. models can be utilized in a more reliable construction environment if the accuracy of the prediction model is improved by expanding the process

A Study on the Performance of Deep learning-based Automatic Classification of Forest Plants: A Comparison of Data Collection Methods (데이터 수집방법에 따른 딥러닝 기반 산림수종 자동분류 정확도 변화에 관한 연구)

  • Kim, Bomi;Woo, Heesung;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • The use of increased computing power, machine learning, and deep learning techniques have dramatically increased in various sectors. In particular, image detection algorithms are broadly used in forestry and remote sensing areas to identify forest types and tree species. However, in South Korea, machine learning has rarely, if ever, been applied in forestry image detection, especially to classify tree species. This study integrates the application of machine learning and forest image detection; specifically, we compared the ability of two machine learning data collection methods, namely image data captured by forest experts (D1) and web-crawling (D2), to automate the classification of five trees species. In addition, two methods of characterization to train/test the system were investigated. The results indicated a significant difference in classification accuracy between D1 and D2: the classification accuracy of D1 was higher than that of D2. In order to increase the classification accuracy of D2, additional data filtering techniques were required to reduce the noise of uncensored image data.