• Title/Summary/Keyword: tree based learning

Search Result 435, Processing Time 0.027 seconds

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

Discretization of Continuous-Valued Attributes considering Data Distribution (데이터 분포를 고려한 연속 값 속성의 이산화)

  • Lee, Sang-Hoon;Park, Jung-Eun;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.391-396
    • /
    • 2003
  • This paper proposes a new approach that converts continuous-valued attributes to categorical-valued ones considering the distribution of target attributes(classes). In this approach, It can be possible to get optimal interval boundaries by considering the distribution of data itself without any requirements of parameters. For each attributes, the distribution of target attributes is projected to one-dimensional space. And this space is clustered according to the criteria like as the density value of each target attributes and the amount of overlapped areas among each density values of target attributes. Clusters which are made in this ways are based on the probabilities that can predict a target attribute of instances. Therefore it has an interval boundaries that minimize a loss of information of original data. An improved performance of proposed discretization method can be validated using C4.5 algorithm and UCI Machine Learning Data Repository data sets.

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.

A Comparative Study on the Methodology of Failure Detection of Reefer Containers Using PCA and Feature Importance (PCA 및 변수 중요도를 활용한 냉동컨테이너 고장 탐지 방법론 비교 연구)

  • Lee, Seunghyun;Park, Sungho;Lee, Seungjae;Lee, Huiwon;Yu, Sungyeol;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study analyzed the actual frozen container operation data of Starcool provided by H Shipping. Through interviews with H's field experts, only Critical and Fatal Alarms among the four failure alarms were defined as failures, and it was confirmed that using all variables due to the nature of frozen containers resulted in cost inefficiency. Therefore, this study proposes a method for detecting failure of frozen containers through characteristic importance and PCA techniques. To improve the performance of the model, we select variables based on feature importance through tree series models such as XGBoost and LGBoost, and use PCA to reduce the dimension of the entire variables for each model. The boosting-based XGBoost and LGBoost techniques showed that the results of the model proposed in this study improved the reproduction rate by 0.36 and 0.39 respectively compared to the results of supervised learning using all 62 variables.

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms

  • Kidega, Richard;Ondiaka, Mary Nelima;Maina, Duncan;Jonah, Kiptanui Arap Too;Kamran, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.

A Case Study of Geometry Teaching and Learning based on Waldorf Education Methods in a Korean Alternative School (발도르프 수학교육 방법을 적용한 우리나라 대안학교 기하단원 교수·학습에 관한 사례연구)

  • Song, Man Ho;Kim, Young-Ok
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.197-222
    • /
    • 2014
  • The purpose of this research is to find out if it is possible to apply the Waldorf School's mathematics education method to Korean alternative schools which are run under the national curriculum. To achieve this, the researcher conducted class on geometry for three weeks with ten 7th graders(four girls and six boys) from Apple Tree Waldorf alternative school in Busan, which has adopted Valdorf education courses. For the first two weeks, the class was about 'fundamental geometrical construction', and then it was evaluated. On the third week, the lesson was on plane figures, followed by a test with 9 plane figure questions that are based on general middle school mathematics curriculum. The result shows that most of the students understood 'fundamental geometrical construction'. When it comes to the test on 'plane figures', seven students got 8 out of 9 right, two students got 6 out of 9 right, and one of them had difficulty solving the questions. According to the results of this research, it is thought that there will be no problem for students to understand mathematical concept even if the Waldorf School's mathematics education method is applied to Korean alternative schools. Also, the Waldorf School's mathematics education method is considered to be a good teaching model for the Korean mathematics curriculum which places emphasis on 'mathematical creativity' in regard to the curriculum and contents.

A new classification method using penalized partial least squares (벌점 부분최소자승법을 이용한 분류방법)

  • Kim, Yun-Dae;Jun, Chi-Hyuck;Lee, Hye-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.931-940
    • /
    • 2011
  • Classification is to generate a rule of classifying objects into several categories based on the learning sample. Good classification model should classify new objects with low misclassification error. Many types of classification methods have been developed including logistic regression, discriminant analysis and tree. This paper presents a new classification method using penalized partial least squares. Penalized partial least squares can make the model more robust and remedy multicollinearity problem. This paper compares the proposed method with logistic regression and PCA based discriminant analysis by some real and artificial data. It is concluded that the new method has better power as compared with other methods.

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Prediction Model for Gastric Cancer via Class Balancing Techniques

  • Danish, Jamil ;Sellappan, Palaniappan;Sanjoy Kumar, Debnath;Muhammad, Naseem;Susama, Bagchi ;Asiah, Lokman
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.53-63
    • /
    • 2023
  • Many researchers are trying hard to minimize the incidence of cancers, mainly Gastric Cancer (GC). For GC, the five-year survival rate is generally 5-25%, but for Early Gastric Cancer (EGC), it is almost 90%. Predicting the onset of stomach cancer based on risk factors will allow for an early diagnosis and more effective treatment. Although there are several models for predicting stomach cancer, most of these models are based on unbalanced datasets, which favours the majority class. However, it is imperative to correctly identify cancer patients who are in the minority class. This research aims to apply three class-balancing approaches to the NHS dataset before developing supervised learning strategies: Oversampling (Synthetic Minority Oversampling Technique or SMOTE), Undersampling (SpreadSubsample), and Hybrid System (SMOTE + SpreadSubsample). This study uses Naive Bayes, Bayesian Network, Random Forest, and Decision Tree (C4.5) methods. We measured these classifiers' efficacy using their Receiver Operating Characteristics (ROC) curves, sensitivity, and specificity. The validation data was used to test several ways of balancing the classifiers. The final prediction model was built on the one that did the best overall.