• Title/Summary/Keyword: tree based learning

Search Result 435, Processing Time 0.028 seconds

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

Machine Learning-Based Retrofit Scheme Development for Seismically Vulnerable Reinforced Concrete School Buildings (기계학습기반 기둥 파괴유형 분류모델을 활용한 학교건축물의 내진보강전략 구축)

  • Kim, Subin;Choi, Insub;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.275-283
    • /
    • 2024
  • Many school buildings are vulnerable to earthquakes because they were built before mandatory seismic design was applied. This study uses machine learning to develop an algorithm that rapidly constructs an optimal reinforcement scheme with simple information for non-ductile reinforced concrete school buildings built according to standard design drawings in the 1980s. We utilize a decision tree (DT) model that can conservatively predict the failure type of reinforced concrete columns through machine learning that rapidly determines the failure type of reinforced concrete columns with simple information, and through this, a methodology is developed to construct an optimal reinforcement scheme for the confinement ratio (CR) for ductility enhancement and the stiffness ratio (SR) for stiffness enhancement. By examining the failure types of columns according to changes in confinement ratio and stiffness ratio, we propose a retrofit scheme for school buildings with masonry walls and present the maximum applicable stiffness ratio and the allowable range of stiffness ratio increase for the minimum and maximum values of confinement ratio. This retrofit scheme construction methodology allows for faster construction than existing analysis methods.

A Study on Predictors of Academic Achievement in College Students : Focused on J University (대학생의 학업성취도 예측요인 연구 : J 대학을 중심으로)

  • Son, Yo-Han;Kim, In-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.519-529
    • /
    • 2020
  • The purpose of this study is to establish a model for predicting academic achievement of college students and to reveal the interrelationship and relative influence of each factor. For this, we surveyed the personal factors and learning strategy factors of 1,310 learners at J University, and analyzed the discriminant factors and patterns of the predictors of academic achievement through the decision tree analysis, a data mining method, and examined the relative effects of each factor. Binary logistic regression analysis was performed for viewing. As a result, the most important factor for predicting academic achievement was efficacy, and other factors such as motivation, time management, and depression were predictive of academic achievement. The patterns of factors predicting academic achievement were found to be high in efficacy and time management, and high in motivation for learning even if the efficacy was moderate. Low efficacy and learning motivation, and high depression have been shown to decrease academic achievement. Based on these results, the study suggested the efficacy and motivation to improve academic achievement of college students, strengthening time management education, and managing negative emotions.

Comparative Analysis of the Binary Classification Model for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 이진 분류 모델 비교 분석)

  • Jung, Yong-Jin;Lee, Jong-Sung;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • High forecast accuracy is required as social issues on particulate matter increase. Therefore, many attempts are being made using machine learning to increase the accuracy of particulate matter prediction. However, due to problems with the distribution of imbalance in the concentration and various characteristics of particulate matter, the learning of prediction models is not well done. In this paper, to solve these problems, a binary classification model was proposed to predict the concentration of particulate matter needed for prediction by dividing it into two classes based on the value of 80㎍/㎥. Four classification algorithms were utilized for the binary classification of PM10. Classification algorithms used logistic regression, decision tree, SVM, and MLP. As a result of performance evaluation through confusion matrix, the MLP model showed the highest binary classification performance with 89.98% accuracy among the four models.

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems (소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교)

  • Kim, Chan-Ju;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.345-349
    • /
    • 2009
  • Social bookmarking systems are a typical web 2.0 service based on folksonomy, providing the platform for storing and sharing bookmarking information. Spammers in social bookmarking systems denote the users who abuse the system for their own interests in an improper way. They can make the entire resources in social bookmarking systems useless by posting lots of wrong information. Hence, it is important to detect spammers as early as possible and protect social bookmarking systems from their attack. In this paper, we applied a diverse set of machine learning approaches, i.e., decision tables, decision trees (ID3), $na{\ddot{i}}ve$ Bayes classifiers, TAN (tree-augment $na{\ddot{i}}ve$ Bayes) classifiers, and artificial neural networks to this task. In our experiments, $na{\ddot{i}}ve$ Bayes classifiers performed significantly better than other methods with respect to the AUC (area under the ROC curve) score as veil as the model building time. Plausible explanations for this result are as follows. First, $na{\ddot{i}}ve$> Bayes classifiers art known to usually perform better than decision trees in terms of the AUC score. Second, the spammer detection problem in our experiments is likely to be linearly separable.

Development of a Game Content Based on Metaverse Providing Decision Tree Algorithm Education for Middle School Students (중학생을 위한 의사결정나무 알고리즘 교육을 제공하는 메타버스 기반 게임 콘텐츠 개발)

  • Hyun, Subin;Kim, Yujin;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.106-117
    • /
    • 2022
  • In 2021, AI basics were introduced in the high school curriculum. There are many worries that the problem of utilization-oriented education will be repeated with the introduction of artificial intelligence education rather than the principles that occurred when ICT was applied to education in the past. Most of the existing AI education platforms focus only on the use of AI. For artificial intelligence education of middle school students, there are difficulties in learning about the process by which artificial intelligence derives results and learning the principles of artificial intelligence algorithms. Recently, as the educational application of metaverse has become a hot topic, research has been started to improve learning achievement by arousing students' immersion and interest. This research developed educational game contents about decision tree algorithm using metaverse as educational contents that can be used in middle school AI education. By applying games to education, it was intended to increase students' interest and immersion in artificial intelligence, and to increase educational effectiveness. In this paper, the educational effectiveness, difficulty, and level of interest were analyzed for pre-service teachers regarding the developed game content. Based on this, a future principle-oriented artificial intelligence education method was suggested.

A Study on Management of Student Retention Rate Using Association Rule Mining (연관관계 규칙을 이용한 학생 유지율 관리 방안 연구)

  • Kim, Jong-Man;Lee, Dong-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.67-77
    • /
    • 2018
  • Currently, there are many problems due to the decline in school-age population. Moreover, Korea has the largest number of universities compared to the population, and the university enrollment rate is also the highest in the world. As a result, the minimum student retention rate required for the survival of each university is becoming increasingly important. The purpose of this study was to examine the effects of reducing the number of graduates of education and the social climate that prioritizes employment. And to determine what the basic direction is for students to manage the student retention rate, which can be maintained from admission to graduation, to determine the optimal input variables, Based on the input parameters, we will make associative analysis using apriori algorithm to collect training data that is most suitable for maintenance rate management and make base data for development of the most efficient Deep Learning module based on it. The accuracy of Deep Learning was 75%, which is a measure of graduation using decision trees. In decision tree, factors that determine whether to graduate are graduated from general high school and students who are female and high in residence in urban area have high probability of graduation. As a result, the Deep Learning module developed rather than the decision tree was identified as a model for evaluating the graduation of students more efficiently.

Improving Classification Accuracy in Hierarchical Trees via Greedy Node Expansion

  • Byungjin Lim;Jong Wook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.113-120
    • /
    • 2024
  • With the advancement of information and communication technology, we can easily generate various forms of data in our daily lives. To efficiently manage such a large amount of data, systematic classification into categories is essential. For effective search and navigation, data is organized into a tree-like hierarchical structure known as a category tree, which is commonly seen in news websites and Wikipedia. As a result, various techniques have been proposed to classify large volumes of documents into the terminal nodes of category trees. However, document classification methods using category trees face a problem: as the height of the tree increases, the number of terminal nodes multiplies exponentially, which increases the probability of misclassification and ultimately leads to a reduction in classification accuracy. Therefore, in this paper, we propose a new node expansion-based classification algorithm that satisfies the classification accuracy required by the application, while enabling detailed categorization. The proposed method uses a greedy approach to prioritize the expansion of nodes with high classification accuracy, thereby maximizing the overall classification accuracy of the category tree. Experimental results on real data show that the proposed technique provides improved performance over naive methods.

A study on algal bloom forecast system based on hydro-meteorological factors in the mainstream of Nakdong river using machine learning (머신러닝를 이용한 낙동강 본류 구간 수문-기상인자 조류 예보체계 연구)

  • Taewoo Lee;Soojun Kim;Junhyeong Lee;Kyunghun Kim;Hoyong Lee;Duckgil Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.245-253
    • /
    • 2024
  • Blue-green algal bloom, or harmful algal bloom has a negative impact on the aquatic ecosystem and purified water supply system due to oxygen depletion in the water body, odor, and secretion of toxic substances in the freshwater ecosystem. This Blue-green algal bloom is expected to increase in intensity and frequency due to the increase in algae's residence time in the water body after the construction of the Nakdong River weir, as well as the increase in surface temperature due to climate change. In this study, in order to respond to the expected increase in green algae phenomenon, an algal bloom forecast system based on hydro-meteorological factors was presented for preemptive response before issuing a algal bloom warning. Through polyserial correlation analysis, the preceding influence periods of temperature and discharge according to the algal bloom forecast level were derived. Using the decision tree classification, a machine learning technique, Classification models for the algal bloom forecast levels based on temperature and discharge of the preceding period were derived. And a algal bloom forecast system based on hydro-meteorological factors was derived based on the results of the decision tree classification models. The proposed algae forecast system based on hydro-meteorological factors can be used as basic research for preemptive response before blue-green algal blooms.