• Title/Summary/Keyword: tree based learning

Search Result 435, Processing Time 0.03 seconds

Forecasting Sow's Productivity using the Machine Learning Models (머신러닝을 활용한 모돈의 생산성 예측모델)

  • Lee, Min-Soo;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.

The Parallel Corpus Approach to Building the Syntactic Tree Transfer Set in the English-to- Vietnamese Machine Translation

  • Dien Dinh;Ngan Thuy;Quang Xuan;Nam Chi
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.382-386
    • /
    • 2004
  • Recently, with the machine learning trend, most of the machine translation systems on over the world use two syntax tree sets of two relevant languages to learn syntactic tree transfer rules. However, for the English-Vietnamese language pair, this approach is impossible because until now we have not had a Vietnamese syntactic tree set which is correspondent to English one. Building of a very large correspondent Vietnamese syntactic tree set (thousands of trees) requires so much work and take the investment of specialists in linguistics. To take advantage from our available English-Vietnamese Corpus (EVC) which was tagged in word alignment, we choose the SITG (Stochastic Inversion Transduction Grammar) model to construct English- Vietnamese syntactic tree sets automatically. This model is used to parse two languages at the same time and then carry out the syntactic tree transfer. This English-Vietnamese bilingual syntactic tree set is the basic training data to carry out transferring automatically from English syntactic trees to Vietnamese ones by machine learning models. We tested the syntax analysis by comparing over 10,000 sentences in the amount of 500,000 sentences of our English-Vietnamese bilingual corpus and first stage got encouraging result $(analyzed\;about\;80\%)[5].$ We have made use the TBL algorithm (Transformation Based Learning) to carry out automatic transformations from English syntactic trees to Vietnamese ones based on that parallel syntactic tree transfer set[6].

  • PDF

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.

Deep Learning Based Tree Recognition rate improving Method for Elementary and Middle School Learning

  • Choi, Jung-Eun;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.9-16
    • /
    • 2019
  • The goal of this study is to propose an efficient model for recognizing and classifying tree images to measure the accuracy that can be applied to smart devices during class. From the 2009 revised textbook to the 2015 revised textbook, the learning objective to the fourth-grade science textbook of elementary schools was added to the plant recognition utilizing smart devices. In this study, we compared the recognition rates of trees before and after retraining using a pre-trained inception V3 model, which is the support of the Google Inception V3. In terms of tree recognition, it can distinguish several features, including shapes, bark, leaves, flowers, and fruits that may lead to the recognition rate. Furthermore, if all the leaves of trees may fall during winter, it may challenge to identify the type of tree, as only the bark of the tree will remain some leaves. Therefore, the effective tree classification model is presented through the combination of the images by tree type and the method of combining the model for the accuracy of each tree type. I hope that this model will apply to smart devices used in educational settings.

Development of Artificial Intelligence Janggi Game based on Machine Learning Algorithm (기계학습 알고리즘 기반의 인공지능 장기 게임 개발)

  • Jang, Myeonggyu;Kim, Youngho;Min, Dongyeop;Park, Kihyeon;Lee, Seungsoo;Woo, Chongwoo
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.137-148
    • /
    • 2017
  • Researches on the Artificial Intelligence has been explosively activated in various fields since the advent of AlphaGo. Particularly, researchers on the application of multi-layer neural network such as deep learning, and various machine learning algorithms are being focused actively. In this paper, we described a development of an artificial intelligence Janggi game based on reinforcement learning algorithm and MCTS (Monte Carlo Tree Search) algorithm with accumulated game data. The previous artificial intelligence games are mostly developed based on mini-max algorithm, which depends only on the results of the tree search algorithms. They cannot use of the real data from the games experts, nor cannot enhance the performance by learning. In this paper, we suggest our approach to overcome those limitations as follows. First, we collects Janggi expert's game data, which can reflect abundant real game results. Second, we create a graph structure by using the game data, which can remove redundant movement. And third, we apply the reinforcement learning algorithm and MCTS algorithm to select the best next move. In addition, the learned graph is stored by object serialization method to provide continuity of the game. The experiment of this study is done with two different types as follows. First, our system is confronted with other AI based system that is currently being served on the internet. Second, our system confronted with some Janggi experts who have winning records of more than 50%. Experimental results show that the rate of our system is significantly higher.

A Study on the Deep Learning-based Tree Species Classification by using High-resolution Orthophoto Images (고해상도 정사영상을 이용한 딥러닝 기반의 산림수종 분류에 관한 연구)

  • JANG, Kwangmin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • In this study, we evaluated the accuracy of deep learning-based tree species classification model trained by using high-resolution images. We selected five species classed, i.e., pine, birch, larch, korean pine, mongolian oak for classification. We created 5,000 datasets using high-resolution orthophoto and forest type map. CNN deep learning model is used to tree species classification. We divided training data, verification data, and test data by a 5:3:2 ratio of the datasets and used it for the learning and evaluation of the model. The overall accuracy of the model was 89%. The accuracy of each species were pine 95%, birch 89%, larch 80%, korean pine 86% and mongolian oak 98%.

Path-smoothing for a robot arm manipulator using a Gaussian process

  • Park, So-Youn;Lee, Ju-Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.191-196
    • /
    • 2015
  • In this paper, we present a path-smoothing algorithm for a robot arm manipulator that finds the path using a joint space-based rapidly-exploring random tree. Unlike other smoothing algorithms which require complex mathematical computation, the proposed path-smoothing algorithm is done using a Gaussian process. To find the optimal hyperparameters of the Gaussian process, we use differential evolution hybridized with opposition-based learning. The simulation result indicates that the Gaussian process whose hyperparameters were optimized by hybrid differential evolution successfully smoothed the path generated by the joint space-based rapidly-exploring random tree.

Tree-based Navigation Pattern Analysis

  • Choi, Hyun-Jip
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.271-279
    • /
    • 2001
  • Sequential pattern discovery is one of main interests in web usage mining. the technique of sequential pattern discovery attempts to find inter-session patterns such that the presence of a set of items is followed by another item in a time-ordered set of server sessions. In this paper, a tree-based sequential pattern finding method is proposed in order to discover navigation patterns in server sessions. At each learning process, the suggested method learns about the navigation patterns per server session and summarized into the modified Rymon's tree.

  • PDF

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.