Twitter is one of the most famous SNS(Social Network Service) in the world. Twitter spammer accounts that are created easily by E-mail authentication deliver harmful content to twitter users. This paper presents a spammer detection method that utilizes features based on the relationship between users in twitter. Relationship-based features include friends relationship that represents user preferences and type relationship that represents similarity between users. We compared the performance of the proposed method and conventional spammer detection method on a dataset with 3% to 30% spammer ratio, and the experimental results show that proposed method outperformed conventional method in Naive Bayesian Classification and Decision Tree Learning.
Place recognition for LBS (Location Based Service) has been one of the important techniques for user-oriented service. FLANN (Fast Library for performing Approximate Nearest Neighbor) of place recognition with image features is fast, but it is affected much by environmental condition such as occlusions. This paper presents a place recognition method using quad vocabulary tree with SURF (Speeded Up Robust Features). In learning stage, an image is represented with spatial pyramid of three levels and vocabulary trees of their sub-regions are constructed. Query image is matched with the learned vocabulary trees in each level. The proposed method measures homography error of the matched features. By considering the number of inliers in sub-region, we can improve place recognition performance.
Journal of Korean Society of Industrial and Systems Engineering
/
v.44
no.4
/
pp.227-233
/
2021
Predictive maintenance has been one of important applications of data science technology that creates a predictive model by collecting numerous data related to management targeted equipment. It does not predict equipment failure with just one or two signs, but quantifies and models numerous symptoms and historical data of actual failure. Statistical methods were used a lot in the past as this predictive maintenance method, but recently, many machine learning-based methods have been proposed. Such proposed machine learning-based methods are preferable in that they show more accurate prediction performance. However, with the exception of some learning models such as decision tree-based models, it is very difficult to explicitly know the structure of learning models (Black-Box Model) and to explain to what extent certain attributes (features or variables) of the learning model affected the prediction results. To overcome this problem, a recently proposed study is an explainable artificial intelligence (AI). It is a methodology that makes it easy for users to understand and trust the results of machine learning-based learning models. In this paper, we propose an explainable AI method to further enhance the explanatory power of the existing learning model by targeting the previously proposedpredictive model [5] that learned data from a core facility (Hyper Compressor) of a domestic chemical plant that produces polyethylene. The ensemble prediction model, which is a black box model, wasconverted to a white box model using the Explainable AI. The proposed methodology explains the direction of control for the major features in the failure prediction results through the Explainable AI. Through this methodology, it is possible to flexibly replace the timing of maintenance of the machine and supply and demand of parts, and to improve the efficiency of the facility operation through proper pre-control.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.5
/
pp.119-124
/
2017
In 1997, IBM's DeepBlue won the world chess championship, Garry Kasparov, and recently, Google's AlphaGo won all three games against Ke Jie, who was ranked 1st among all human Baduk players worldwide, interest in deep running has increased rapidly. DeepPurple, proposed in this paper, is a AI chess engine based on deep learning. DeepPurple Chess Engine consists largely of Monte Carlo Tree Search and policy network and value network, which are implemented by convolution neural networks. Through the policy network, the next move is predicted and the given situation is calculated through the value network. To select the most beneficial next move Monte Carlo Tree Search is used. The results show that the accuracy and the loss function cost of the policy network is 43% and 1.9. In the case of the value network, the accuracy is 50% and the loss function cost is 1, respectively.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.2
/
pp.93-103
/
2019
This study analyzed the impact of smartphone usage on walking speed during walking on two pedestrian walkways in Daejeon Metropolitan City. For the analysis, the video data about the actual use of smartphone was acquired and the walking speed was calculated based on the walking density of the pedestrian Level Of Service(LOS) presented in the Road Capacity Manual. Multiple regression analysis and decision tree using machine learning were used to analyze the impact of smartphone usage on walking speed, and as the explanatory variables, gender, disable smartphone, use of smartphone using auditory function, use of smartphone using visual function, LOS A, LOS B, LOS C were adopted. The result showed that LOS C had the highest impact on walking speed change and the women's group using their visual function was founded to have the slowest walking speed in LOS C. In particular, the author found that walking speed significantly decreased in the case of use of visual function rather than listening to music or the hearing on the phone.
International Journal of Control, Automation, and Systems
/
v.6
no.6
/
pp.904-914
/
2008
An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.
International Journal of Computer Science & Network Security
/
v.24
no.7
/
pp.11-23
/
2024
Triage is a practice of accurately prioritizing patients in emergency department (ED) based on their medical condition to provide them with proper treatment service. The variation in triage assessment among medical staff can cause mis-triage which affect the patients negatively. Developing ED triage system based on machine learning (ML) techniques can lead to accurate and efficient triage outcomes. This study aspires to develop a triage system using machine learning techniques to predict ED triage levels using patients' information. We conducted a retrospective study using Security Forces Hospital ED data, from 2021 through 2023 during Hajj period in Saudia Arabi. Using demographics, vital signs, and chief complaints as predictors, two machine learning models were investigated, naming gradient boosted decision tree (XGB) and deep neural network (DNN). The models were trained to predict ED triage levels and their predictive performance was evaluated using area under the receiver operating characteristic curve (AUC) and confusion matrix. A total of 11,584 ED visits were collected and used in this study. XGB and DNN models exhibit high abilities in the predicting performance with AUC-ROC scores 0.85 and 0.82, respectively. Compared to the traditional approach, our proposed system demonstrated better performance and can be implemented in real-world clinical settings. Utilizing ML applications can power the triage decision-making, clinical care, and resource utilization.
Seo, Min Song;Castillo Osorio, Ever Enrique;Yoo, Hwan Hee
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.6
/
pp.351-361
/
2021
The seriousness of fire is rising because fire causes enormous damage to property and human life. Therefore, this study aims to predict various risk factors affecting fire by fire type. The predictive analysis of fire factors was carried out targeting Gyeonggi-do, which has the highest number of fires in the country. For the analysis, using machine learning methods SVM (Support Vector Machine), RF (Random Forest), GBRT (Gradient Boosted Regression Tree) the accuracy of each model was presented with a high fit model through MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error), and based on this, predictive analysis of fire factors in Gyeonggi-do was conducted. In addition, using machine learning methods such as SVM (Support Vector Machine), RF (Random Forest), and GBRT (Gradient Boosted Regression Tree), the accuracy of each model was presented with a high-fit model through MAE and RMSE. Predictive analysis of occurrence factors was achieved. Based on this, as a result of comparative analysis of three machine learning methods, the RF method showed a MAE = 1.765 and RMSE = 1.876, as well as the MAE and RMSE verification and test data were very similar with a difference between MAE = 0.046 and RMSE = 0.04 showing the best predictive results. The results of this study are expected to be used as useful data for fire safety management allowing decision makers to identify the sequence of dangers related to the factors affecting the occurrence of fire.
Kim, Yong-Se;Cha, Hyun-Jin;Park, Seon-Hee;Cho, Yun-Jung;Yoon, Tae-Bok;Jung, Young-Mo;Lee, Jee-Hyong
한국HCI학회:학술대회논문집
/
2006.02a
/
pp.519-525
/
2006
Advances in information and telecommunication technology increasingly reveal the potential of computer supported education. However, most computer supported learning systems until recently did not pay much attention to different characteristics of individual learners. Intelligent learning environments adaptive to learner's preferences and tasks are desired. Each learner has different preferences and needs, so it is very crucial to provide the different styles of learners with different learning environments that are more preferred and more efficient to them. This paper reports a study of the intelligent learning environment where the learner's preferences are diagnosed using learner models, and then user interfaces are customized in an adaptive manner to accommodate the preferences. In this research, the learning user interfaces were designed based on a learning-style model by Felder & Silverman, so that different learner preferences are revealed through user interactions with the system. Then, a learning style modeling is done from learner behavior patterns using Decision Tree and Neural Network approaches. In this way, an intelligent learning system adaptive to learning styles can be built. Further research efforts are being made to accommodate various other kinds of learner characteristics such as emotion and motivation as well as learning mastery in providing adaptive learning support.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.10
/
pp.1296-1301
/
2021
With the recent increase in diabetes incidence worldwide, research has been conducted to predict diabetes through various machine learning and deep learning technologies. In this work, we present a model for predicting diabetes using machine learning techniques with German Frankfurt Hospital data. We apply outlier handling using Interquartile Range (IQR) techniques and Pearson correlation and compare model-specific diabetes prediction performance with Decision Tree, Random Forest, Knn (k-nearest neighbor), SVM (support vector machine), Bayesian Network, ensemble techniques XGBoost, Voting, and Stacking. As a result of the study, the XGBoost technique showed the best performance with 97% accuracy on top of the various scenarios. Therefore, this study is meaningful in that the model can be used to accurately predict and prevent diabetes prevalent in modern society.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.