• Title/Summary/Keyword: treatment planning

Search Result 1,814, Processing Time 0.028 seconds

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

Consideration of root position in virtual tooth setup for extraction treatment: A comparative study of simulated and actual treatment results

  • Mirinae Park;Veerasathpurush Allareddy;Phimon Atsawasuwan;Min Kyeong Lee;Kyungmin Clara Lee
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.26-34
    • /
    • 2023
  • Objective: The purpose of the present study was to compare the root positions in virtual tooth setups using only crowns in a simulated treatment with those achieved in the actual treatment. Methods: Pre- and post-treatment intraoral and corresponding cone beam computed tomography (CBCT) scans were obtained from 15 patients who underwent orthodontic treatment with premolar extraction. A conventional virtual tooth setup was used for the treatment simulation. Pre- and post-treatment three-dimensional digital tooth models were fabricated by integrating the patients' intraoral and CBCT scans. The simulated root positions in the virtual setup were obtained by merging the crown in the virtual setup and root in the pre-treatment tooth model. The root positions of the simulated and actual post-treatment tooth models were compared. Results: Differences in root positions between the simulated and actual models were > 1 mm in all teeth, and statistically significant differences were observed (p < 0.05), except for the maxillary lateral incisors. The differences in the inter-root angulation were > 1° in all teeth, and statistically significant differences were observed in the maxillary and mandibular canines. Conclusions: The virtual tooth setup using only crown data showed errors over the clinical limits. The clinical application of a virtual setup using crowns and roots is necessary for accurate and precise treatment simulation, particularly in extraction treatment.

Case Reports of Class I malocclusions treated by Bioprogressive Mechanism (Bioprogressive Mechanism에 의한 Class I 부정교합의 교정치험예)

  • Chung, Kyu Rhim
    • The korean journal of orthodontics
    • /
    • v.10 no.1
    • /
    • pp.95-103
    • /
    • 1980
  • The present paper describes 3 clinical cases in which the orthodontic treatment was effected by the Bioprogressive therapy following the extraction of the upper and lower first premolars. What is most noteworthy in the present treatment is the use of a systems approach to diagnosis and treatment by the application of the visual treatment objective in planning treatment, evaluating anchorage and monitoring results, and the rest being performed routinely by the Bioprogressive mechanism. The result achieved by this method is very favorable and the efficiency of the Bioprogressive therapy is quite satisfactory.

  • PDF

Advanced Treatment Planning Method for Gamma Knife Radiosurgery of Cerebral Arteriovenous Malformations (뇌동정맥기형의 감마나이프 방사선 수술 -치료 계획 방법의 개선을 중심으로-)

  • Jang Geon-Ho;Lim Young Jin;Hong Seong Eon;Leem Won
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.87-94
    • /
    • 1995
  • Since March 1992, total 200 patients who visited our hospital as functional or organic lesions of central nervous system were treated by gamma knife stereotactic radiosurgery for 27 months. Thirty-nine patients of total cases was diagnosed as cerebral arteriovenous malformation. The rate of magnification on X-ray film was reduced by cutting fixation adaptor from 1.0 to below 1.45 times. In order to treat the deep- and lateral-seated cerebral arteriovenous malformation, we slightly modified the angiographic indicator, the commercial Leksell system, by cutting each inner sides about 5mm, We performed the more distinction of the scales by adapting 0.5mm or 1mm copper filter to angiographic indicator. The center point of indicator(X=100mm, Y=100mm, Z=100mm) is corrected by adjusting scales of X-, Y-, Z-axis to each inner 100 and outer 100 point within 1-2mm by repeated exposure of X-ray on films in trial-and-errors. We have developed the 'GKANGIO' programed as the Fortran-77 in Microvax - 3100, which can save treatment planning time and perform accurate pretreatment planning using the theoretical target metrix center. The theoretical description of the simplified method is presented for the reduction of experimental and numerical errors in treatment planning of radiosurgery.

  • PDF

The Usability Evaluation Half Beam Radiation Treatment Technique on the Esophageal Cancer (식도암 환자에서의 Half Beam 치료법의 유용성 평가)

  • Park, Hochoon;Kim, Youngjae;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.287-293
    • /
    • 2015
  • Because of esophageal cancer has the long length of the lesion and also inhomogeneous in depth. So, the radiation dose distribution was inhomogeneous in radiation therapy. To overcomes the dose distribution uniformity using half beam method. Patient's CT image was used radiation treatment planning. We used two planning methods that one is the using normal beam and another is using half beam. Than comparing the two radiotherapy planning using target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues - heart, spinal cord, lung -. In results, Treatment planning using half beam is little more than normal beam in target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues covering. However, If the patient is not correct position patients may arise a side effect. Thus, the using in Half beam involving the geometrically exact under lung cancer is considered to advantage.

Overexposed Accidents due to Erroneous Input to Treatment Planning System in Japan

  • Tabushi, Katsuyoshi;Endo, Masahiro;Ikeda, Hiroshi;Uchiyama, Yukio;Hoshina, Masao;Nakagawa, Keiichi;Sakai, Kunio
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.11-12
    • /
    • 2002
  • Accidental overexposures by radiotherapy have gathered attention recently in Japan. The widely publicized accidents have occurred at the government official benefit society hospital and at the hospital affiliated to a medical school. The accident at the government official benefit society hospital occurred when one of two existing accelerators was renewed. A radiotherapy planning system was also introduced at that time. Then treatment planning for the old and the new linear accelerator was performed using the system. There were variations in wedge factors for the 30 degrees wedge filter between the old and the new linear accelerator. That is, the difference in the structure of the wedge filter (30 degrees) resulted in variations of the wedge factors between both accelerators. In order to keep strength, a lead board was backed to the lead wedge filter for the new linear accelerator, whereas the wedge filter for the old one was made of the iron. The X-ray attenuation of the iron wedge filter is smaller than that of the lead wedge filter. The basic beam data of the old linear accelerator, however, wasn't delivered properly between the user and the maker. Then, the accident took place because the same wedge factor was used for the old and the new linear accelerator. On the other hand, the accident which occurred at the university hospital was brought about by the input mistake in initialization of the computer system when a linear accelerator was introduced. The input mistake was found when the software of the system was updated. If the dose had been measured and confirmed adequately, the accidents could have been prevented in both cases.

  • PDF

Treatment Planning and Dosimetry of Small Radiation Fields for Stereotactic Radiosurgery (Stereotactic Radiosurgery를 위한 소형 조사면의 선량측정)

  • Chu Sung Sil;Suh Chang Ok;Loh John J.K.;Chung Sang Sup
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.101-112
    • /
    • 1989
  • The treatment planning and dosimetry of small fields for stereotactic radiosurgery with 10 MV x-ray isocentrically mounted linear accelerator is presented. Special consideration in this study was given to the variation of absorbed dose with field size, the central axis percent depth doses and the combined moving beam dose distribution. The collimator scatter correction factors of small fields $(1\times1\~3\times3cm^2)$ were measured with ion chamber at a target chamber distance of 300cm where the projected fields were larger than the polystyrene buildup caps and it was calibrated with the tissue equivalent solid state detectors of small size (TLD, PLD, ESR and semiconductors). The central axis percent depth doses for $1\timesl\;and\;3\times3cm^2$ fields could be derived with the same acuracy by interpolating between measured values for larger fields and calculated zero area data, and it was also calibrated with semiconductor detectors. The agreement between experimental and calculated data was found to be under $2\%$ within the fields. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor regions was performed with dose planning computer system (Therac 2300) and was verified with film dosimetry. The more the number of strips and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. The circular cone, we designed, improves the alignment, minimizes the penumbra of the beam and formats ball shape of treatment area without stellate patterns. These dosimetric techniques can provide adequate physics background for stereotactic radiosurgery with small radiation fields and 10MV x-ray beam.

  • PDF

Discrepancies in Dose-volume Histograms Generated from Different Treatment Planning Systems

  • Kim, Jung-in;Han, Ji Hye;Choi, Chang Heon;An, Hyun Joon;Wu, Hong-Gyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • Background: We analyzed changes in the doses, structure volumes, and dose-volume histograms (DVHs) when data were transferred from one commercial treatment planning system (TPS) to another commercial TPS. Materials and Methods: A total of 22 volumetric modulated arc therapy (VMAT) plans for nasopharyngeal cancer were generated with the Eclipse system using 6-MV photon beams. The computed tomography (CT) images, dose distributions, and structure information, including the planning target volume (PTV) and organs at risk (OARs), were transferred from the Eclipse to the MRIdian system in digital imaging and communications in medicine (DICOM) format. Thereafter, DVHs of the OARs and PTVs were generated in the MRIdian system. The structure volumes, dose distributions, and DVHs were compared between the MRIdian and Eclipse systems. Results and Discussion: The dose differences between the two systems were negligible (average matching ratio for every voxel with a 0.1% dose difference criterion = $100.0{\pm}0.0%$). However, the structure volumes significantly differed between the MRIdian and Eclipse systems (volume differences of $743.21{\pm}461.91%$ for the optic chiasm and $8.98{\pm}1.98%$ for the PTV). Compared to the Eclipse system, the MRIdian system generally overestimated the structure volumes (all, p < 0.001). The DVHs that were plotted using the relative structure volumes exhibited small differences between the MRIdian and Eclipse systems. In contrast, the DVHs that were plotted using the absolute structure volumes showed large differences between the two TPSs. Conclusion: DVH interpretation between two TPSs should be performed using DVHs plotted with the absolute dose and absolute volume, rather than the relative values.

CURRENT RESEARCH ON ACCELERATOR-BASED BORON NEUTRON CAPTURE THERAPY IN KOREA

  • Kim, Jong-Kyung;Kim, Kyung-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.531-544
    • /
    • 2009
  • This paper is intended to provide key issues and current research outcomes on accelerator-based Boron Neutron Capture Therapy (BNCT). Accelerator-based neutron sources are efficient to provide epithermal neutron beams for BNCT; hence, much research, worldwide, has focused on the development of components crucial for its realization: neutron-producing targets and cooling equipment, beam-shaping assemblies, and treatment planning systems. Proton beams of 2.5 MeV incident on lithium target results in high yield of neutrons at relatively low energies. Cooling equipment based on submerged jet impingement and micro-channels provide for viable heat removal options. Insofar as beam-shaping assemblies are concerned, moderators containing fluorine or magnesium have the best performance in terms of neutron accumulation in the epithermal energy range during the slowing-down from the high energies. NCT_Plan and SERA systems, which are popular dose distribution analysis tools for BNCT, contain all the required features (i.e., image reconstruction, dose calculations, etc.). However, detailed studies of these systems remain to be done for accurate dose evaluation. Advanced research centered on accelerator-based BNCT is active in Korea as evidenced by the latest research at Hanyang University. There, a new target system and a beam-shaping assembly have been constructed. The performance of these components has been evaluated through comparisons of experimental measurements with simulations. In addition, a new patient-specific treatment planning system, BTPS, has been developed to calculate the deposited dose and radiation flux in human tissue. It is based on MCNPX, and it facilitates BNCT efficient planning based via a user-friendly Graphical User Interface (GUI).

New bimaxillary orthognathic surgery planning and model surgery based on the concept of six degrees of freedom

  • Jeon, Jaeho;Kim, Yongdeok;Kim, Jongryoul;Kang, Heejea;Ji, Hyunjin;Son, Woosung
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.42-52
    • /
    • 2013
  • The aim of this paper was to propose a new method of bimaxillary orthognathic surgery planning and model surgery based on the concept of 6 degrees of freedom (DOF). A 22-year-old man with Class III malocclusion was referred to our clinic with complaints of facial deformity and chewing difficulty. To correct a prognathic mandible, facial asymmetry, flat occlusal plane angle, labioversion of the maxillary central incisors, and concavity of the facial profile, bimaxillary orthognathic surgery was planned. After preoperative orthodontic treatment, surgical planning based on the concept of 6 DOF was performed on a surgical treatment objective drawing, and a Jeon's model surgery chart (JMSC) was prepared. Model surgery was performed with Jeon's orthognathic surgery simulator (JOSS) using the JMSC, and an interim wafer was fabricated. Le Fort I osteotomy, bilateral sagittal split ramus osteotomy, and malar augmentation were performed. The patient received lateral cephalometric and posteroanterior cephalometric analysis in postretention for 1 year. The follow-up results were determined to be satisfactory, and skeletal relapse did not occur after 1.5 years of surgery. When maxillary and mandibular models are considered as rigid bodies, and their state of motion is described in a quantitative manner based on 6 DOF, sharing of exact information on locational movement in 3-dimensional space is possible. The use of JMSC and JOSS will actualize accurate communication and performance of model surgery among clinicians based on objective measurements.