• Title/Summary/Keyword: treatment device

Search Result 1,531, Processing Time 0.032 seconds

Development of Brace-type Wearable Robot for Lumbar Stabilization (요부 안정화를 위한 복대형 입는 로봇 개발)

  • Joowan Kim;Jaehoon Sim;Keewon Kim;Sungun Chung;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.189-196
    • /
    • 2023
  • An abdominal brace is a recommended treatment for patients with lumbar spinal disorders. However, due to the nature of the static brace, it uniformly compresses the lumbar region, which can weaken the lumbar muscles or create a psychological dependence that worsens the condition of the spine when worn for an extended period of time. Due to these issues, doctors limit the wearing time when prescribing it to patients. In this paper, we propose a device that can dynamically provide abdominal pressure and support according to the lumbar motion. The proposed device is a wearable robot in the form of a brace, with actuators and a driving unit mounted on the brace. To enhance wearability and reduce the weight of the device, worm gears actuator and a multi-pulley mechanism were adopted. Based on the spinal motion of the wearer measured by the Inertia measurement unit sensors, the drives wire by driving pulley, which provide tension to the multi-pulley mechanism on both sides, dynamically tightening or loosening the device. Finally, the device can dynamically provide abdominal pressure and support. We describe the hardware and system configuration of the device and demonstrate its potential through basic control experiments.

Ultrasonic Spray Nozzle System with Piezoelectric Device for Chemicals Dispersion (압전체를 이용한 약품 분사용 초음파 분사 노즐 시스템)

  • 고재석;김용현;김형수;조순행;최승철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.65-71
    • /
    • 2003
  • A new type of ultrasonic spray nozzle was fabricated employing a piezoelectric device. The spray nozzle was designed to disperse chemicals in a water treatment mixing tank. The piezoelectric properties in ultrasonic spray nozzles were optimized to improve the dispersion of chemicals. The piezoelectrics were packaged in an aluminum case with silicone resin for the aqueous solution proof packaging. Chemicals were dispersed with high efficiency and the chemicals consumption was reduced by the ultrasonic fine particle spraying. The concentration of Escherichia coli in mixing tank was decreased remarkably using ultrasonic spray nozzle dispersion compared to the conventional methods.

  • PDF

The Accuracy of the Calculated Dose for a Cardiac Implantable Electronic Device

  • Sung, Jiwon;Son, Jaeman;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.150-154
    • /
    • 2019
  • The objective of this study is to monitor the radiation doses delivered to a cardiac implantable electronic device (CIED) by comparing the absorbed doses calculated by a commercial treatment planning system (TPS) to those measured by an in vivo dosimeter. Accurate monitoring of the radiation absorbed by a CIED during radiotherapy is necessary to prevent damage to the device. We conducted this study on three patients, who had the CIED inserted and were to be treated with radiotherapy. Treatment plans were generated using the Eclipse system, with a progressive resolution photon optimizer algorithm and the Acuros XB dose calculation algorithm. Measurements were performed on the patients using optically stimulated luminescence detectors placed on the skin, near the CIED. The results showed that the calculated doses from the TPS were up to 5 times lower than the measured doses. Therefore, it is recommended that in vivo dosimetry be conducted during radiotherapy for CIED patients to prevent damage to the CIED.

Treatment of pulmonary thromboembolism using Arrow-Trerotola percutaneous thrombolytic device

  • Kim, Tae Kyun;Park, Ji Young;Bae, Jun Ho;Choi, Jae Woong;Ryu, Sung Kee;Kim, Min-Jung;Kim, Jun Bong;Sohn, Jang Won
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.1
    • /
    • pp.28-32
    • /
    • 2014
  • Pulmonary thromboembolism (PTE) increases the pressure of the right ventricle and leads to symptoms and signs, such as dyspnea and hypoxia. If PTE causes hemodynamic instability, thrombolytic therapy should be considered. A mechanical thrombectomy is an alternative treatment to thrombolytic therapy and should be considered when thrombolytic therapy is contraindicated. Various devices are used in mechanical maceration and catheter-directed thrombolysis, but there is no standard mechanical device for PTE as yet. We report here on 2 clinical experiences of mechanical thrombectomy using the Arrow-Trerotola percutaneous thrombolytic device to remove residual clots after systemic thrombolysis in patients with massive PTE.

Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test (순환동전위 분극실험을 이용한 스테인리스강의 그린데스용액에서 전기화학적 특성에 미치는 온도의 영향)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.266-280
    • /
    • 2021
  • Since 2020, the International Maritime Organization (IMO) has updated regulations on the sulfur content to be less than 0.5% in exhaust gas emitted from ships. Accordingly, the exhaust gas post-treatment device for ships, which is SOx/NOx reduction technology, was introduced. However, the exhaust gas post-treatment device is suffering corrosion because of the harsh corrosive environment formed by sulfate and chlorine oxide through the desulfurization process. In this investigation, cyclic potentiodynamic polarization (CPDP) experiment for UNS S31603 and UNS N08367 was performed in a green death solution that simulates the environment of a desulfurization device. The corrosion rate of UNS S31603 at the highest temperature was about 3 times higher than that of UNS N83067. Also, electron microscope scan revealed corrosion type UNS N83067 presents intergranular corrosion tendency. On the other hand, UNS S31603 was observed as general corrosion. The α values of UNS N08367 at 30 ℃ and 60 ℃ were higher than those of UNS S31603, thus UNS N08367 is considered to have a higher local damage tendency. Whereas, since the α value of UNS S31603 at 90 ℃ is larger than that of UNS N08367, UNS S31603 is considered to have a higher local damage trend.

Analysis of reported adverse events of pipeline stents for intracranial aneurysms using the FDA MAUDE database

  • Mokshal H. Porwal;Devesh Kumar;Sharadhi Thalner;Hirad S. Hedayat;Grant P. Sinson
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.25 no.3
    • /
    • pp.275-287
    • /
    • 2023
  • Objective: Flow diverting stents (FDS) are a validated device in the treatment of intracranial aneurysms, allowing for minimally invasive intervention. However, after its approval for use in the United States in 2011, post-market surveillance of adverse events is limited. This study aims to address this critical knowledge gap by analyzing the FDA Manufacturer and User Facility Device Experience (MAUDE) database for patient and device related (PR and DR) reports of adverse events and malfunctions. Methods: Using post-market surveillance data from the MAUDE database, PR and DR reports from January 2012-December 2021 were extracted, compiled, and analyzed with R-Studio version 2021.09.2. PR and DR reports with insufficient information were excluded. Raw information was organized, and further author generated classifications were created for both PR and DR reports. Results: A total of 2203 PR and 4017 DR events were recorded. The most frequently reported PR adverse event categories were cerebrovascular (60%), death (11%), and neurological (8%). The most frequent PR adverse event reports were death (11%), thrombosis/thrombus (9%) cerebral infarction (8%), decreased therapeutic response (7%), stroke/cerebrovascular accident (6%), intracranial hemorrhage (5%), aneurysm (4%), occlusion (4%), headache (4%), neurological deficit/dysfunction (3%). The most frequent DR reports were activation/positioning/separation problems (52%), break (9%), device operates differently than expected (4%), difficult to open or close (4%), material deformation (3%), migration or expulsion of device (3%), detachment of device or device component (2%). Conclusions: Post-market surveillance is important to guide patient counselling and identify adverse events and device problems that were not identified in initial trials. We present frequent reports of several types of cerebrovascular and neurological adverse events as well as the most common device shortcomings that should be explored by manufacturers and future studies. Although inherent limitations to the MAUDE database are present, our results highlight important PR and DR complications that can help optimize patient counseling and device development.

Application of sensor and MEMS in medicine (의료에서의 센서와 MEMS 기술 응용)

  • ;Lee, Sang Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1536-1540
    • /
    • 1997
  • Recently, many advanced technologies in electronics, mechanics, material and computer science have been applied to medictine and they have changed the method of diagnosis and treatment to more quantitative way than before. Now day, with the aid of this technology, the device for the minimal invasive diagnosis and treatment is being developed for the convenience and safety of patients. this paper introduces application of senso and MEMS(Micro Electro Mechnical System) in medicine and biotechnology, which are essential factor for the realization of minimal invasive diagnosis and treatment.

  • PDF

A Study on the Automation of Cam Heat Treatment Process using Deep Learning (딥러닝을 이용한 캠 열처리 공정 자동화에 관한 연구)

  • Choi, Sung-Yug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.281-288
    • /
    • 2020
  • In this paper, we propose a control method to solve the surface hardness non-uniformity due to flow non-uniformity occurring in the heat treatment process of marine CAM. In the water cooling method including the decarbonization method, an automation device for deformation control has been developed and applied. LSTM was used to estimate the water cooling conditions, and the proposed method was found to be meaningful by improving the prototype results.

간척지, 해안가 근처의 농업용수 공급을 위한 기수담수 시스템 연구

  • Hong, Min
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.16-24
    • /
    • 2015
  • Desalination technology is a process to remove salt from water. There are three classified In accordance with the concentration of salt The concentration of sea water 15,000~50,000mg/l, brackish water 1,500~15,000mg/l, desalination less than 500mg/l.. In general, salt to remove for using a pre-treatment UF filter, but this study is new pre-treatment technology RO Membrane process technology Suspended particulate matter is said most were treated at the pre-treatment equipment, wheat affluent particulate material was removed from the MF filter. Influent SS 16.2mg /l The treatment was effective in treatment 0.05mg /l of 99% is removed. COD is reduced to 60% in the pre-treatment device, after treatment was reduced to 30% RO membrane. Influent COD 10.2mg/l treatment was removed 1.9mg/l. The removal rate is 81.9%. Desalination removes the ionic substances in the RO Membrane. Influent EC $978.8{\mu}s/cm$ and treatment showed a result of $18.7{\mu}s/cm$.

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF