• Title/Summary/Keyword: treadmill task

Search Result 30, Processing Time 0.022 seconds

Effects of Treadmill Exercise on Memory, Hippocampal Cell Proliferation, BDNF, TrkB, and Forebrain Cholinergic Cells in Adolescent Rats (트레드밀 운동이 청소년기 흰쥐의 기억력과 해마 신경세포생성, BDNF, TrkB, 그리고 전뇌 콜린 세포에 미치는 영향)

  • Lee, Hee-Hyuk
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.403-410
    • /
    • 2009
  • This study investigated the effects of treadmill exercise on memory ability, cell proliferation, BDNF, and TrkB in the hippocampus and forebrain cholinergic cells in adolescent rats. Male Sprague-Dawley rats (4 weeks old) were randomly assigned to the following two groups: the sedentary group (n=10) and the exercise group (n=10). Rats in the exercise group were forced to run on a treadmill for 30 min, five times per week for 4 weeks. The latency of the step-through avoidance task was used in order to evaluate memory ability. Hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) expression were assessed by Western blotting. Hippocampal cell proliferation and forebrain cholinergic cells were assessed by immunohistochemistry. The present study showed that treadmill running during the adolescent period significantly improved memory capability, increased hippocampal cell proliferation, up-regulated hippocampal BDNF and TrkB expression, and enhanced the number of forebrain cholinergic cells. These results suggest that regular exercise during the adolescent period may enhance memory function.

Effects of Cognitive Task on Stride Rate Variability by Walking Speeds (보행속도변화에 따른 인지 과제 수행이 보행수 변동성에 미치는 영향)

  • Choi, Jin-Seung;Yoo, Ji-Hye;Kim, Hyung-Shik;Chung, Soon-Cheol;Yi, Jeong-Han;Lee, Bong-Soo;Tack, Gye-Rae
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.323-331
    • /
    • 2006
  • The purpose of this study was to investigate the effect of performing a cognitive task during treadmill walking on the stride rate variability. Ten university students(age $24.0{\pm}0.25$, height $172{\pm}3.1cm$, weight $66{\pm}5.3kg$) were participated in dual task experiments which consist of both walking alone and walking with a cognitive task. Two-back task was selected for the cognitive task since it did not have learning effect during the experimental procedure.3D motion analysis system was used to measure subject's position data by changing walking speed with 4.8, 5.6, 6.4, 6.8, and 7.2 km/hr. Stride rate was calculated by the time between heel contact and heel contact. Accuracy rate of a cognitive task during walking, coefficient of variance, allometric scaling methods and Fano factor were used to estimated the stride rate variability. As the walking speed increased, accuracy rate decreased and the logarithmic value of Fano factor increased which showed the statistical difference. Thus it can be concluded that the gait control mechanism is distracted by the secondary attention focus which is the cognitive task ie. two-back task. Further study is needed to clarify this by increasing the number of subject and experiment time.

Measurement of workload by cardiac arrhythmia (부정맥을 이용한 작업부하의 평가)

  • 박영택;박경수
    • Journal of the Ergonomics Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 1983
  • While three subjects were running on treadmill at five different speeds, their heart beat interval times were measured and analyzed. From the analysis, we discovered some relation- ships between workload and cardiac response, especially cardiac arrhythmia. Using these relationships, a physioligical model for estimating workload was developed. Although pulse rate has been considered as a good measure of physical load, this study shows that it is highly subject dependent and therefore unsuitable for task evalution. It is recommended to use range of heart beat interval times rather than pulse rate in the evaluation of light work.

  • PDF

Effects of ball kicking dual task training on gait performance and balance in individuals with chronic hemiparetic stroke

  • Kim, Minseong;Shim, Jaehun;Yu, Kyunghoon;Kim, Jiwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.170-176
    • /
    • 2016
  • Objective: The purpose of this study was to compare the effect of ball kicking dual task gait training with the addition of a cognitive task with general treadmill gait training (TGT) on gait speed, gait endurance, functional gait, balance and balance confidence in patients with chronic hemiparetic stroke. Design: Randomized controlled trial. Methods: Fourteen stroke patients who volunteered to participate in this study were randomly divided into two groups with seven patients in each group: ball kicking dual task training (DTT) group and TGT group. The DTT group received ball kicking DTT with cognitive tasks consisted of three stages and the TGT group received TGT using normal walking speed, respectively, for 30 minutes per day 3 days per week for 4 weeks. Outcome assessments were made with the 10-meter walking test (10MWT), 6-minute walking test (6MWT), functional gait assessment (FGA), Berg balance scale (BBS), timed up and go test (TUG), and the activities-specific balance confidence (ABC) scale. Results: The DTT group showed more significant improvement in the 10MWT, 6MWT, FGA, BBS, TUG, and ABC than the TGT group (p<0.05). In addition, within groups comparison showed significant improvement in all variables (p<0.05). Conclusions: The findings suggest that both ball kicking dual task gait training and TGT improve gait performance and balance in patients with chronic hemiparetic stroke. However, ball kicking dual task gait training results showed more favorable outcomes than TGT for chronic hemiparetic stoke patients.

Physiological viewpoint of the recommended safe weights of load for manual materials handling tasks (인력물자취급의 권장안전하중에 대한 생리학적 고찰)

  • 김홍기
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.23-36
    • /
    • 1997
  • The objective of this study was to make a comparison of the oxygen consumption rates during the lifting activities and the physiological criteria of the recommended weights of RWL, AL, and MPL by NIOSH Guideline. The physical Work Capacity (PWC) based on the bicycle ergometer was 2562.71ml/min, and the one based on the treadmill was 2874.89ml/min for the college male students of Korea. Lifting activities with four different lifting frequencies(2, 5, 8, 11 lifts/min) for one lifting range from floor to 76cm height were studied. The oxygen consumption rates and the heart rates were measured or recorded while subjects were lifting the weight of RWL, AL, and MPL. The heart rates and the oxygen consumption rates increased as the frequency increased from 2 to lifts/min. However, those slightly decreased at the frequency of 11 lifts/ min. The measured oxygen consumption rates were ranging from 2.3% to 29.6% higher than the physiological criteria 620, 700, and 1000ml/min, respectively, of the RWL, AL, and MPL for all the lifting frequencies (5, 8, 11 lift/min) except 2 lifts/min. It si suggested that the physiological criteria of NIOSH Guideline should be based on the lifting PWC, which can consider the type of lifting activity and the frequency of the task, rather than using the PWC by ergometer or treadmill. The measured oxygen consumption rates were ranging from 13.26% to 40.11% higher than the values estimated using the models by Garg and Kim. From these findings it is suggested that the NIOSH Equation should not be directly applied to Korean without resonable modifications.

  • PDF

A Walking Movement System for Virtual Reality Navigation (가상현실 네비게이션을 위한 보행 이동 시스템의 개발)

  • Cha, Moohyun;Han, Soonhung;Huh, Youngcheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.290-298
    • /
    • 2013
  • A walking navigation system (usually known as a locomotion interface) is an interactive platform which gives simulated walking sensation to users using sensed bipedal motion signals. This enables us to perform navigation tasks using only bipedal movement. Especially, it is useful for the certain VR task which emphasizes on physical human movement, or accompanies understanding of the size and complexity of building structures. In this work, we described system components of VR walking system and investigated several types of walking platform by literature survey. We adopted a MS Kinect depth sensor for the motion recognition and a treadmill which includes directional turning mechanism for the walking platform. Through the integration of these components with a VR navigation scenario, we developed a simple VR walking navigation system. Finally several technical issues were found during development process, and further research directions were suggested for the system improvement.

Virtual Reality Community Gait Training Using a 360° Image Improves Gait Ability in Chronic Stroke Patients

  • Kim, Myung-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.3
    • /
    • pp.185-190
    • /
    • 2020
  • Purpose: Gait and cognitive impairment in stroke patients exacerbate fall risk and mobility difficulties during multi-task walking. Virtual reality can provide interesting and challenging training in a community setting. This study evaluated the effect of community-based virtual reality gait training (VRGT) using a 360-degree image on the gait ability of chronic stroke patients. Methods: Forty-five chronic stroke patients who were admitted to a rehabilitation hospital participated in this study. Patients meeting the selection criteria were randomly divided into a VRGT group (n=23) and a control group (n=22). Both these groups received general rehabilitation. The VRGT group was evaluated using a 360-degree image that was recorded for 50 minutes a day, 5 days per week for a total of 6 weeks after their training. The control group received general treadmill training for the same amount of time as that of the VRGT group. The improvement in the spatiotemporal parameters of gait was evaluated using a gait analyzer system before and after training. Results: The spatiotemporal gait parameters showed significant improvements in both groups compare with the baseline measurements (p<0.05), and the VRGT group showed more improvement than the control group (p<0.05). Conclusion: Community-based VRGT has been shown to improve the walking ability of chronic stroke patients and is expected to be used in rehabilitation of stroke patients in the future.

The Influence of Restricted Arm Swing on Symmetry, Movement of Trunk and Pelvis Rotation according to Using a Mobile Phone

  • Chu, Jae-Hyeung;Kim, Yun-Jin;Ko, Yu-Min;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Purpose: This study was conducted to investigate the effects of variations in arm swing during gait on movement of the trunk and pelvis. During the gait task, the angle of the trunk and pelvic rotation were analyzed according to arm swing conditions. Methods: Seventeen healthy males participated in this study. All subjects were analyzed for gait on a treadmill three times each under three different types of arm swing conditions - natural arm swing, restricted arm swing using a phone, restricted swing in both arms. 3-D motion analysis systems were used to collect and analyze the kinematic data of trunk and pelvic movements, and repeated one-way ANOVA was used to compare the trunk and pelvic kinematic data and symmetry index. The level of significance was ${\alpha}=0.05$. Results: The results showed kinematic differences in trunk and pelvic during gait based on the arm swing conditions. Specifically, there were significant differences in trunk rotation, left and right trunk rotation and symmetry index of trunk rotation during gait among the three arm swing conditions. ROM was used to calculate a symmetry index (SI) based on the average left and right trunk rotation in which a value closer to zero indicated better balance. The SI obtained for arm swing restricted with the phone was closer to -1 than the other conditions. Conclusion: Restricted arm swing due to use of a phone had the possibility to induce instability of postural control while walking, which could be seen to suggest a risk of falling during gait.

Effect of Forward, Backward Walking using Partial Weight Bearing on Walking of the Patient with Incomplete Spinal Cord Injury (부분 체중지지를 이용한 앞, 뒤로 걷기 운동이 불완전 척수손상환자의 보행에 미치는 효과)

  • Kim, Seok-Hwan;Chung, Jae-Hoon
    • PNF and Movement
    • /
    • v.9 no.2
    • /
    • pp.29-37
    • /
    • 2011
  • Purpose : The purpose of this study was to find out of an effect of forward, backward walking using partial weight bearing on walking of the patient with incomplete spinal cord injury. Methods : The average age, and the term of being sick of 6 patients who were selected as the subjects with incomplete spinal cord injury and who received medical attention in the National Rehabilitation Hospital, was 50.3 years old, and 10.7 months, and those were also the patients that were classified as ASIA-C or D by ASIA. The forward, backward walking using a partial weight bearing system as the research method, took total 6 weeks, 3 days per week, 3 times per day, total 45 minutes for each time(15 minutes for a time, 5 minutes for a breathing time), and the 15 minutes was used for forward walking 7.30 minutes, backward walking for 7.30 minutes, to find out before and after the test of WISCI, PCI, Walking Speed, Motor Score of Lower Limbs for the selected patients with incomplete spinal cord injury. Results : The result was showed WISCI from 17 points to 17 points that is, no change occurred at all, and PCI from $161.01{\pm}103.06$ to $74.97{\pm}58.19$, some amount of reduction that is not statistically significant(p<.05). Regarding walking speed, it increased from $24{\pm}.07m/sec$ to. $61{\pm}.35m/sec$, that is statistically significant(p<.05), and motor score of lower limbs showed statistically significant increase like from $33.17{\pm}7.08$ to $37{\pm}5.14$(P<.05). Conclusion : The 4 evaluation categories seem to have shown differences due to an insufficient number of subjects, and short test term, and it seems the more diverse task-oriented walking exercises should be studied in the coming days.

Effects of Exercise Type on ẞ-Amyloid, BDNF and Cognitive Function in Type 2 Diabetic Mice (제 2형 당뇨 마우스의 운동 형태가 ẞ-Amyloid, BDNF 및 인지기능에 미치는 영향)

  • Kim, Do-Yeon;Woo, Jinhee;Shin, Ki-Ok;Roh, Hee-Tae;Lee, Yul-Hyo;Yoon, Byung-Kon;Park, Chan-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.409-417
    • /
    • 2020
  • The purpose of this study was to investigate the effects of different types of exercise training on ẞ-Amyloid, Brain-Derived Nerurotrophic Factor(BDNF) and cognitive function in mice with Diabetes Mellitus Group(DM.G). 24 male C57BL/6 mice were randomly assigned to the control (C.G. n = 6) and Diabetes Mellitus Group(DM.G. n = 18) groups. After the Diabetes Mellitus induction period, the DM group was subdivided into DM.G. + sedentary (DM.G., n = 6), DM.G. + endurance exercise (A.G, n = 6), and DM.G. + resistance exercise (R.G., n = 6). The A.G. and R.G performed treadmill and ladder climbing exercises 5 times per week for 8 weeks, respectively. After 8 weeks the results are as follows: ẞ-Amyloid showed higher levels of DM.G. than in A.G., R.G., and C.G., but was not statistically significant(p>.05). BDNF was significantly lower in DM.G. than in C.G., A.G., and R.G.(p <0.05). The Y-maze task performance for cognitive function was significantly lower in DM.G. than in C.G., A.G., and R.G.(p <0.05). These results predict that diabetes can negatively affect ẞ-Amyloid, BDNF and cognitive function. It can also be predicted that low-intensity exercise can positively improve ẞ-Amyloid, BDNF and cognitive function regardless of the type of exercise.