• Title/Summary/Keyword: traverse driving system

Search Result 2, Processing Time 0.012 seconds

A Study on the Simplified Controller for the Heavy-Load Traverse Driving System Using Performance Estimation Program (성능추정 프로그램을 이용한 대부하 선회구동/제어 시스템 단순화 연구)

  • Choi, Keun-Kuk;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.261-267
    • /
    • 2000
  • In this study, a heavy-load servo-control driving system, which are composed of controller, electro-hydraulic servomechanism, hydraulic motor, reduction gearbox, turret slew bearing and turret structure, are investigated to simplify the servo-control system. To estimate the effect of each component, nonlinear modeling and simulation are carried out. In the first stage, to prove the validity of the performance estimation program, simulation results are compared with experimental results. In the second stage, the effect of each component of the control system is evaluated and then a simplified control system is suggested.

  • PDF

Route Planning and Elevator Boarding Algorithms for Last Mile Delivery Service in Multi-floor Environments (다층 환경에서의 라스트 마일 배송 서비스를 위한 경로 계획 및 엘리베이터 탑승 알고리즘)

  • Daegyu Lee;Gyuree Kang;Taejin Kim;D. Hyunchul Shim;Hoon Jung;Eunhye Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.10-17
    • /
    • 2023
  • Recently, robots have been actively utilized for logistics and delivery services in various places such as restaurants, hotels, and hospitals. In addition, it provides a safer environment, convenience, and cost efficiency to the customers. However, when it comes to autonomous delivery in a multi-floor environment, the task is still challenging. Especially for wheeled mobile robots, it is necessary to deal with elevators to perform the last-mile delivery services. Therefore, we present a multi-floor route planning algorithm that enables a wheeled mobile robot to traverse an elevator for the delivery service. In addition, an elevator boarding mission algorithm was developed to perceive the drivable region within the elevator and generate a feasible path that is collision-free. The algorithm was tested with real-world experiments and was demonstrated to perform autonomous postal delivery service in a multi-floor building. We concluded that our study could contribute to building a stable autonomous driving robot system for a multi-floor environment.