• Title/Summary/Keyword: traveling wave

Search Result 307, Processing Time 0.023 seconds

Fault Location Algorithm for HVDC Cables (HVDC 케이블 고장점 표정 알고리즘)

  • Kwon, Young-Jin;Lee, Dong-Gyu;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.73-74
    • /
    • 2007
  • For a safe operation of HVDC systems, the fault location and clearance of faults in the HVDC lines are important. Past methods for fault location on HVDC cable depend on existence of assistance cables and fault resistance, broken cable and environment of fault location. For complement these problems, in this paper, fault location method using traveling wave and cross correlation function is proposed for HVDC cables. Voltage controlled source and current controlled source HVDC were modeled by EMTDC/PSCAD. The proposed algorithm were verified varying with fault distance, fault resistance.

  • PDF

Displacement distribution analysis of two sided stator of USM by using ATILA-GID (ATILA-GID를 이용한 초음파 모터의 양면 Teeth 구조를 갖는 고정자의 변위분포 해석)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jung, Hae-Eun;Lim, Kee-Joe;Jung, Soo-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.282-283
    • /
    • 2007
  • 압전소자의 초음파 진동을 구동원으로 하는 초음파 모터의 토오크 특성을 개선하기 위하여 양면 Teeth 구조를 가지는 진행파 여진용 고정자를 설계하고, 이를 유한요소해석 프로그램 ATILA-GID를 이용하여 변위분포를 해석하였다. 한 면에만 Teeth 구조를 가지는 기존의 고정자를 이용한 초음파 모터가 소형화, 제한된 토오크 응용분야에 있어서 Direct drive actuation을 위한 발판을 마련해 주었다면, 본 연구에서 제안하는 양면 Teeth 구조의 고정자는 토오크와 효율, 출력특성의 개선과 함께 구조적인 특성에서 기인하는 온도 안정성에 의하여 그 응용분야의 확대를 기대할 수 있다.

  • PDF

A Study on the Very Fast Rising High Voltage Pulse Using Distributed Circuit (분포정수회로를 이용한 고전압 급준 펄스 연구)

  • Kwak, Hee-Ro;Kweon, Dong-Jin;Song, Ill-Gun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.274-277
    • /
    • 1994
  • This paper describes a very fast rising high voltage pulse generation for studying surge phinomenon and prebreakdown of liquid dielectric by appling the traveling wave theory of the distributed circuit. This very fast rising high voltage pulse generator consists of a charging coaxial cable, a discharging switch, and a terminating resistance. As results, the rising time of pulses are about 31(nsec), which is very fast, and its duration is 950[nsec] when using 200[m] coaxial cable. The length of the coaxial cable and changing voltage can regulate the duration and the amplitude or the polarity of the pulse. When terminated the resistance, capacitor and inductor, the measured waveform corresponds with simulated waveform.

  • PDF

Modulation characteristics of semiconductor electrooptic light modulators (반도체 전계광학 광변조기의 변조특성)

  • 이종창;최왕엽;박화선;변영태;김선호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.22-23
    • /
    • 2000
  • GaAs/AlGaAs나 InGaAs/InGaAsP와 같은 반도체 기판을 이용한 전계광학 광변조기는 LD나 SOA와 같은 광소자와 단일기판 집적이 가능하고 낮은 chirping과 높은 변조대역폭을 갖는 외부광변조기로서의 장점으로 인하여 마이크로파 대역의 초고속광통신소자로 각광을 받아왔다. 특히 진행파의 속도가 정합된 traveling-wave 전극 구조를 갖는 경우 변조대역폭은 30-400Hz에 달하고 있다$^{(1)}$ . 그러나 한편으로는 반도체의 전계광학계수(electro-Optic Coefficient)가 LiNbO$_3$에 비해 10분의 1정도로 작아 상대적으로 동작전압이 커지는 단점이 대두되며 실제 구동전압이 수십 V에 이르고 있다. 이런 단점을 극복하기 위하여 p-i-n 구조를 이용하여 전계 집속도를 높이는 방법이 제안되어 동작전압이 2 V/mm 정도까지 감소하였다$^{(2)}$ . 본 논문에서는 이와 같은 반도체 전계광학 광변조기에서의 소신호 및 대신호 광변조특성을 분석함으로써 보다 높은 변조대역폭과 보다 낮은 동작전압을 갖는 구조를 연구하였다. (중략)

  • PDF

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

Implementation of an Underwater ROV for Detecting Foreign Objects in Water

  • Lho, Tae-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • An underwater remotely operated vehicle (ROV) has been implemented. It can inspect foreign substances through a CCD camera while the ROV is running in water. The maximum thrust of the ROV's running thruster is 139.3 N, allowing the ROV to move forward and backward at a running speed of 1.03 m/s underwater. The structural strength of the guard frame was analyzed when the ROV collided with a wall while traveling at a speed of 1.03 m/s underwater, and found to be safe. The maximum running speed of the ROV is 1.08 m/s and the working speed is 0.2 m/s in a 5.8-m deep-water wave pool, which satisfies the target performance. As the ROV traveled underwater at a speed of 0.2 m/s, the inspection camera was able to read characters that were 3 mm in width at a depth of 1.5 m, which meant it could sufficiently identify foreign objects in the water.

Particle Swarm Optimization based Haptic Localization of Plates with Electrostatic Vibration Actuators

  • Gwanghyun Jo;Tae-Heon Yang;Seong-Yoon Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Haptic actuators for large display panels play an important role in bridging the gap between the digital and physical world by generating interactive feedback for users. However, the generation of meaningful haptic feedback is challenging for large display panels. There are dead zones with low haptic sensations when a small number of actuators are applied. In contrast, it is important to control the traveling wave generated by the actuators in the presence of multiple actuators. In this study, we propose a particle swarm optimization (PSO)-based algorithm for the haptic localization of plates with electrostatic vibration actuators. We modeled the transverse displacement of a plate under the effect of actuators by employing the Kirchhoff-Love plate theory. In addition, starting with twenty randomly generated particles containing the actuator parameters, we searched for the optimal actuator parameters using a stochastic process to yield localization. The capability of the proposed PSO algorithm is reported and the transverse displacement has a high magnitude only in the targeted region.

SOLVABILITY FOR A CLASS OF FDES WITH SOME (e1, e2, θ)-NONLOCAL ANTI PERIODIC CONDITIONS AND ANOTHER CLASS OF KDV BURGER EQUATION TYPE

  • Iqbal Jebril;Yazid GOUARI;Mahdi RAKAH;Zoubir DAHMANI
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1017-1034
    • /
    • 2023
  • In this paper, we work two different problems. First, we investigate a new class of fractional differential equations involving Caputo sequential derivative with some (e1, e2, θ)-periodic conditions. The existence and uniqueness of solutions are proven. The stability of solutions is also discussed. The second part includes studying traveling wave solutions of a conformable fractional Korteweg-de Vries-Burger (KdV Burger) equation through the Tanh method. Graphs of some of the waves are plotted and discussed, and a conclusion follows.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

On time reversal-based signal enhancement for active lamb wave-based damage identification

  • Wang, Qiang;Yuan, Shenfang;Hong, Ming;Su, Zhongqing
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1463-1479
    • /
    • 2015
  • Lamb waves have been a promising candidate for quantitative damage identification for various engineering structures, taking advantage of their superb capabilities of traveling for long distances with fast propagation and low attenuation. However, the application of Lamb waves in damage identification so far has been hampered by the fact that the characteristic signals associated with defects are generally weaker compared with those arising from boundary reflections, mode conversions and environmental noises, making it a tough task to achieve satisfactory damage identification from the time series. With awareness of this challenge, this paper proposes a time reversal-based technique to enhance the strength of damage-scattered signals, which has been previously applied to bulk wave-based damage detection successfully. The investigation includes (i) an analysis of Lamb wave propagation in a plate, generated by PZT patches mounted on the structure; (ii) an introduction of the time reversal theory dedicated for waveform reconstruction with a narrow-band input; (iii) a process of enhancing damage-scattered signals based on time reversal focalization; and (iv) the experimental investigation of the proposed approach to enhance the damage identification on a composite plate. The results have demonstrated that signals scattered by delamination in the composite plate can be enhanced remarkably with the assistance of the proposed process, benefiting from which the damage in the plate is identified with ease and high precision.