• Title/Summary/Keyword: trapped mode

Search Result 38, Processing Time 0.019 seconds

Mechanical removal of surface residues on graphene for TEM characterizations

  • Dong-Gyu Kim;Sol Lee;Kwanpyo Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.28.1-28.6
    • /
    • 2020
  • Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine (커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyung-Min;Myung, Cha-Lee;Park, Sim-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

THEMIS Pi2 observations near dawn and dusk sectors in the inner magnetosphere

  • Kwon, Hyuck-Jin;Kim, Khan-Hyuk;Lee, Dong-Hun;Takahashi, K.;Park, Young-Deuk;Bonnell, J.W.
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.40.3-40.3
    • /
    • 2010
  • The most frequently suggested source for Pi2 pulsations in the inner magnetosphere (L < 4) is standing fast-mode waves trapped in the plasmasphere (i.e., plasmaspheric resonances). They have been considered as the source of low-latitude Pi2 pulsations. The plasmaspheric resonance model suggests that compressional fast-mode waves can be detected at all local times inside the plasmasphere provided reflection of the wave energy is efficient. Until now, however, there are no reports about compressional Pi2s observed in the dayside inner magnetosphere. That is, there is longitudinal limit of inner magnetosphere. In February 2008, THEMIS probes were near dawn and/or dusk sides, which are the transition regions between the nightside and dayside, in the inner magnetosphere (L = 2-4) when low-altitude Pi2s were identified at Bohyun (L = 1.35) station in Korea. Using the THEMIS electric field data, we examined if Pi2s are excited by longitudinally localized disturbances. We found that compressional Pi2s having high coherence with a low-latitude Pi2 pulsation occur on dawnside. However, any compressional pulsations in the Pi2 frequency band were not detected on duskside. This indicates that compressional Pi2s disappear near the duskside. Our observations are discussed with spatial plasmaspheric structure and possible Pi2 mechanisms.

  • PDF

Short-duration Electron Precipitation Studied by Test Particle Simulation

  • Lee, Jaejin;Kim, Kyung-Chan;Lee, Jong-Gil
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km) polar-orbiting Korean STSAT-1 (Science and Technology SATellite). These measurements have revealed two important characteristics unique to the microbursts: (1) They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2) The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

A Study of Tailored Blank Welding between Mild Steel and Zn-coated Steel Sheets by $CO_2$ Laser Beam ($CO_2$레이저빔에 의한 저탄소강판과 아연도금강판의 Tailored Blank 용접에 관한 연구)

  • 서종현;김도훈;유병길;이경돈
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.4-10
    • /
    • 1998
  • A basic research for tailored blank welding between mild steel and Zn-coated steel was carried out with $CO_2$ laser beam. The materials used in this work were low carbon steel sheet with a thickness of 1.2mm and Zn-coated steel sheet with the same thickness and 6.3$\mu$m Zn coating. Experiments were carried out by applying the Taguchi method in order to obtain optimized conditions for the application of tailored blank laser welding method in practical manufacturing process. Optical microscopy, XRD, SEM and TEM analysis were performed to observe microstructures and to determine the solidification mode of welded zone. Also mechanical properties were measured by microhardness test tensile test and Erichsen test in order to evaluate the formability of welded specimen. There was no trapped Zn in the fusion zone, and the phases in this region consisted of polygonal ferrite, quasi-polygonal ferrite, banitic ferrite and martensite. The elongation value of welded specimen was more than 80% of that value in the substrate and LDH value was more than 90% of that value in the substrate metal.

  • PDF

Coastally Trapped Waves over a Double Shelf Topography(I) : Free Waves with Exponential Topography (양향성 대륙붕의 대륙붕파(I): 지수함수적 해저지형에서의 자유파)

  • PANG Ig-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.428-436
    • /
    • 1991
  • Double shelf topography allows the existence of two sets of waves propagating in opposite directons. In the case that two shelves are apart sufficiently enough, the solutions show two independent sets of waves which recover the single shelf waves. However, if the distance between two shelves is less than the Rossby deformation radius, the waves become dependent on the geometry of both shelves. Even over a double shelf topography, shelf waves propagate with the shallow water to the right in the Northern Hemisphere. The group velocity of shelf wave has the same direction as phase velocity in the long wave case, but the opposite direction in the short wave case. Each shelf mode has a zero group velocity at some intermediate value of wave length.

  • PDF

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

A Study on the Dynamic Amplification Characteristics of the Domestic Seismic Observation Sites using Shear- and Coda-Wave (S파 및 Coda파를 이용한 국내 관측소지반의 동적 증폭특성에 관한 연구)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.432-439
    • /
    • 2009
  • For more reliable estimation of seismic source, attenuation properties and dynamic ground property, site amplification function should be considered. Among various estimation methods, this study used the Nakamura's method (1989) for estimating site amplification characteristics. This method was originally applied to the surface waves of background noise and therefore there are some limitations in applying to general wave energy. However, recently this method has been extended and applied to the S wave energy successfully. This study applied the method to S wave and Coda wave energy, which is equivalent to the backscattered S wave energy. We used more than 60 observed ground motions from 5 earthquakes which were occurred recently, with magnitude range from 3.6 to 5.1. Each station showed characteristic site amplification property in low-, high- and resonance frequencies. Some of the stations showed as high as 4 times of site amplification in the range of specific frequencies, which may imply abnormal small scale geologic strata below the station or development of various trapped modes in the basin structure. Moreover, removal of site amplification can give us more reliable seismic source and attenuation parameters, addition to the seismic hazard estimation.