• 제목/요약/키워드: transverse stiffness

검색결과 321건 처리시간 0.02초

나선철근교각의 내진성능에 관한 연구 (A Study on Seismic Performance of Spiral Prer)

  • 배성용;김광수;이형준;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.363-368
    • /
    • 2000
  • The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. However, The current seismic design requirements for bridges are based on the USA seismic codes for sever earthquake. This provides the basic factors that affects the performance of spiral reinforced concrete piers for seismic loading, and The specimen tests are performed based on load-displacement, effective stiffness and displacement ductility, etc. The quasi-static test was adopted in order to investigate seismic performance of the spiral reinforced concrete pier specimens which had different transverse steel amount, spacing and longitudinal steel ratio under different axial load levels. This study is concluded that seismic design for transverse reinforcement content of spiral reinforced concrete column has influenced on axial load and effective stiffness etc.

  • PDF

전단 변형을 고려한 보강판의 p-Version 유한요소 해석 (p-Version Finite Element Analysis of Stiffened Plates Including Transverse Shear Deformation)

  • 홍종현;우광성;신영식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.145-152
    • /
    • 1995
  • A general stiffener element which includes transverse shear deformation(TSD) is formulated using the p-version of finite element method. Hierarchic C"-shape functions, derived from Integrals of Legendre polynomials, are used to define the assembled stiffness matrix of the stiffener and plate on the basis of 5 D.0.F displacement fields. The stiffness matrix for the stiffener with respect to the local reference frame is transformed to the plate reference system by applying the appropriate transformation matrices in order to insure compatibility of displacements at the junction of the stiffener and plate. The transformation matrices which account for the orientation and the eccentricity effects of the stiffener with respect to the plate reference axes are used to find local behavior at the junction of the stiffener and the relative contributions of the plate and stiffener to the strength of the composite system. The results obtained by the p-version of the finite element method are compared with the results in literatures, especially those by the h-version software, MICROFEAP-II.P-II.

  • PDF

액상화 영구지반변형에 의한 라이프라인 구조물의 횡방향 거동에 관한 연구 (A Study on transverse Behavior of Lifeline System Due to Liquefaction-induced Permanent Ground Displacement)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.369-376
    • /
    • 1998
  • The purpose of the present study is to analyze the response of pipelines subjected to liquefaction-induced permanent ground displacement and to discuss the failure prediction of domestic waterway pipelines. Initially here, characteristics of liquefaction are reviewed and then permanent ground displacement is investigated base on previous earthquake hazard cases. Next, considering the distribution of the transverse permanent ground displacement and equivalent spring constant effect, formulas obtained by a beam theory are established to analyze continuous pipelines. This analysis was performed without consideration of axial effects. So the finite element analysis was used in order to consider the axial stiffness of soil. As a result, degree of liquefaction, width of deformed ground and axial stiffness are crucial points for evaluation the failure of pipelines subjected to permanent ground displacement.

  • PDF

자동차 클러치 페달 암의 무게 최소화를 위한 형상 최적설계 (Shape Optimal Design to Minimize the Weight of the Pedal Arm of an Automotive Clutch)

  • 이부윤;이현우
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.269-276
    • /
    • 2007
  • Optimal thickness and shape of the pedal arm of an automotive clutch is determined, using the numerical optimization technique, by solving the size and shape optimization problems to minimize its weight. For the optimization problems, two cases of stress and displacement constraints are considered: one from the vertical, and the other from the transverse stiffness test condition. The result of the transverse case is shown to be more conservative than that from the vertical case, being determined as the final optimum.

굽힘 및 비틀림 하중작용시 횡방향 모재균열을 갖는 복합재료 판넬 해석 (Analysis of a Composite Panel with Transverse Matrix Cracks under Bending and Twisting Moments)

  • 박정선;허해규;이수용
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.971-980
    • /
    • 1997
  • This study is to investigate the stiffness degradation of a composite laminated panel including transverse matrix cracks subjected to bending and twisting moments. Micromechanics theory on the composite material is derived by introducing crack density. Iterative numerical scheme is developed to calculate the degraded composite stiffness which has nonlinear relation due to the crack density. The finite element method is used for structural analysis of the composite panel. Structural responses of the composite panel are examined for various laminated angles and crack density under the bending and twisting moments. Also, the effect of crack opening and closing is considered in the examination. It is realized that the matrix cracks may cause severe stiffness reduction and should be considered in the composite laminated panel.

내부 비정상유동을 갖는 파이프계의 동강성모델링 (Exact Dynamic Stiffness Model for the Pipelines Conveying Internal Unsteady Flow)

  • 박종환;이우식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1666-1671
    • /
    • 2003
  • Exact dynamic stiffness model for a uniform straight pipeline conveying unsteady fluid is formulated from a set of fully coupled pipe-dynamic equations of motion, in which the fluid pressure and velocity of internal flow as well as the transverse and axial displacements of the pipeline are all treated as dependent variables. The accuracy of the dynamic stiffness model formulated herein is first verified by comparing its solutions with those obtained by the conventional finite element model. The spectral element analysis based on the present dynamic stiffness model is then conducted to investigate the effects of fluid parameters on the dynamics and stability of an example pipeline problem.

  • PDF

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

순수비틀림을 받는 철근콘크리트 보의 거동에 관한 연구 (A Study on the Behavior of Reinforced Concrete Beams under Pure Torsion)

  • 음성우;박병용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.7-12
    • /
    • 1990
  • This paper presents an equation for balanced-steel ratio in longitudinal and transverse direction throughout analysis based on a space truss model introducing the concept of concrete softening effect. This paper also presents as equation for postcracking torisonal stiffness throughout analysis considering the equilibrium conditions and compatibility conditions based on shear panel. Correlation between predicted postcracking torsional stiffness, and experimental results was good, not only for beams tested in this paper but also for others in the literature.

  • PDF

유한요소법에 의한 다점지지축계의 연성자유횡진동 계산에 관한 연구 (A theoretical calculation of coupled free, transverse vibration of the multi-supported shaft system by the finite element method)

  • 유광택;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.41-49
    • /
    • 1986
  • With the trend towards high propulsive level, increasing ship's dimensions and heavier shaft systems supported by the hull structure of relatively stiffness in modern ships, transverse vibrations of propulsion shaft system have become one of the problems that should be predicted in the early design stage. Regarding transverse vibrations, coupling terms such as oilfilm, gyroscope and hydrodynamic effect of the propeller exist between the vertical and horizontal vibration, furthermore for the shaft system with strut and bossing its physical properties incorporated with hull structure must be considered. In order to predict the transverse vibratory condition of the propulsion shaft and take some appropriate countermeasures, it is necessary to make a fairly strict estimation of the vibratory behaviours of it. In this paper, theoretical approach using the finite element method is investigated to calculate natural frequencies and vibration modes for coupled free transverse vibrations of shaft system in two planes. Based on the method investigated a digital computer program is developed and is applied to calculate the above-mentioned vibrations of an experimental model shaft system. The results of the calculation are compared with those of the experimental measurements and they show an acceptable agreement.

  • PDF

크랙이 존재하는 복합재료 보의 동적 특성 연구 (A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack)

  • 하태완;송오섭
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF