• 제목/요약/키워드: transverse stiffeners

검색결과 38건 처리시간 0.02초

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.

플레이트 거더의 2단 수평보강재 보강 위치 (Reinforcement Location of Plate Girders with Two Longitudinal Stiffeners)

  • 손병직;이규환
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.93-102
    • /
    • 2009
  • Because steel girder bridge has big slenderness ratio, buckling is very important in design. Local buckling of plate girders having two longitudinal stiffeners in different positions under various load conditions is investigated. Various parametric study according to the change of web height, transverse stiffeners and load conditions are examined. These parametric studies are performed by numerical simulation utilizing finite element method. The objective of this study is to present the rational reinforcement location of two longitudinal stiffeners. The results of analysis are compared to that recommended by korean specifications for road bridges(2003).

플레이트 거더의 수평보강재 보강 위치 (Reinforcement Location of Plate Girders with Longitudinal Stiffeners)

  • 손병직;허용학
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.82-89
    • /
    • 2009
  • Unlike concrete bridge, steel bridge resists external force by forming thin plate. Thus, because steel girder bridge has big slenderness ratio, buckling is a major design factor. Plate girder consists of flange and web plate. Because of economic views, web plate that resists shear forces is made by more thinner plate. Thus, web plate has much risk for buckling. The objective of this study is to analyze the buckling behaviors of plate girder and to present the proper reinforcement location of longitudinal stiffeners. Various parametric study according to the change of web height, transverse stiffeners and load condition are examined.

전자빔 용접기 진공 작업실의 구조설계 (Structural Design on the Vacuum Chamber of Electron Beam Welding System)

  • 이영신;류충현;서정;한유희
    • 한국레이저가공학회지
    • /
    • 제1권1호
    • /
    • pp.11-17
    • /
    • 1998
  • The electron beam welding system has the advantages of the high power density, narrow welding section, and small thermal distortion of a workpiece. Recently, the electron beam welding system is widely used to the airplane engineering, nuclear power plant, and automobile industry. In the present paper, the structural analyses on the vacuum chamber of the electron beam welding system are performed by the F.E.M. analysis. The stiffening characteristics on the geometric shape, stiffener height and stiffener span are investigated. The deflection of the stiffened vacuum chamber under pressure is minimized by longitudinal and transverse stiffeners which are continuous in both direction.

  • PDF

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

수평보강재가 있는 판형복부판의 극한전단거동에 관한 실험연구 (Experimental Study on Ultimate Shear Behaviour of Longitudinally Stiffened Plate Girder Web Panels)

  • 이명수
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.167-179
    • /
    • 1999
  • 판형복부판의 좌굴강도를 높이기 위하여 수평보강재나 수직보강재를 대는 방법이 많이 적용되고 있다. 경제적인 판형의 설계를 위하여 복부판의 두께를 얇게 하는 대신, 복부판의 전단강도를 높이기 위하여 수직보강재를 사용하게된다. 수직보강재가 있는 복부판의 극한전단강도의 산정에 관한 연구는 1960년 초반부터 활발하게 진행되어 왔고, 이 결과가 미국의 AASHTO 시방서(1973)와 영국의 British Standard(1983)에 처음 반영되어 현재에 이르고 있다. 수평보강재의 주 역할은 휨응력에 의한 복부판의 좌굴강도를 높이고 횡변위를 억제하는 것이지만, 부수적으로 전단강도를 증가시키는 효과가 있는 것으로 알려지고 있다. 하지만, 이에 대한 연구의 부족으로 인하여 수평보강재가 복부판의 극한전단강도에 미치는 영향이 실제 설계시 반영되지 않고 있다. 본 연구에서는 실험을 통하여 수평보강재가 판형의 극한전단거동에 미치는 영향을 조사하고 이를 기존의 이론들과 비교 검토하였다.

  • PDF

횡리브로 보강된 복합적층 원통형 쉘의 좌굴거동에 관한 연구 (Study on Buckling of Composite Laminated Cylindrical Shells with Transverse Rib)

  • 장석윤
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.493-500
    • /
    • 2004
  • 본 논문에서는 복합재료로 이루어진 원통형 쉘 구조물을 해석모델로 설정하였으며, 좌굴의 링 보강재 보강효과에 대해서 연구하였다. 유한요소법으로 해석을 수행하였으며, 보강재의 요소는 3차원 보요소를 사용하였고, 쉘 요소는 적용성이 뛰어난 평면쉘요소를 사용하였으며, 대체 전단 변형률장을 도입하여 잠김현상을 극복하였다. 본 연구에서 링 보강재는 횡리브(Rib)의 형태이다. 이러한 보강재가 원통형 쉘의 좌굴에 미치는 영향을 고찰하였다. 즉, 보강재의 위치 변화, 보강재의 크기 변화, 쉘의 변장비 변화, 쉘의 지점조건의 변화, 복합재료의 화이버 보강각도 변화 등 다양한 파라미터 연구를 통해서 쉘의 좌굴거동을 분석하였다. 여러가지 설계변수에 대한 보강된 쉘의 거동에 대한 정확한 이해로부터 효율적인 보강설계를 제시하고자 하였으며, 원통형 쉘의 좌굴해석시 좋은 참고자료로 활용할 수 있으리라 기대된다.

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

Effect of stiffeners on failure analyses of optimally designed perforated steel beams

  • Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.183-201
    • /
    • 2016
  • Perforated steel beams can be optimised by increased beam depth and the moment of inertia combined with a reduced web thickness, favouring the use of original I-section beams. The designers are often confronted with situations where optimisation cannot be carried out effectively, taking account of the buckling risk at web posts, moment-shear transfers and local plastic deformations on the transverse holes of the openings. The purpose of this study is to suggest solutions for reducing these failure risks of tested optimal designed beams under applying loads in a self-reacting frame. The design method for the beams is the hunting search optimisation technique, and the design constraints are implemented from BS 5950 provisions. Therefore, I have aimed to explore the strengthening effects of reinforced openings with ring stiffeners, welded vertical simple plates on the web posts and horizontal plates around the openings on the ultimate load carrying capacities of optimally designed perforated steel beams. Test results have shown that compared to lateral stiffeners, ring and vertical stiffeners significantly increase the loadcarrying capacity of perforated steel beams.

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.