• 제목/요약/키워드: transverse magnetic field

검색결과 134건 처리시간 0.042초

CoFe/MnIr 박막 재료에서 저자장 마이크로파 흡수 특성 분석 (Analysis of Low Field Microwave Absorption Properties in CoFe/MnIr Thin Film)

  • 김동영;윤석수
    • 한국자기학회지
    • /
    • 제25권3호
    • /
    • pp.74-78
    • /
    • 2015
  • 본 연구에서는 교환 결합력을 갖는 CoFe/MnIr 박막 재료에서 강자성 공명 장치를 이용하여 자기장 방향에 따른 저자장 마이크로파 흡수(Low field microwave absorption, LFMA) 및 강자성 공명 신호를 측정하였다. 낮은 자기장 영역에서 나타나는 LFMA 신호는 자구의 회전 밀접하게 관계됨을 자화 곡선으로부터 알 수 있었다. 이러한 LFMA 신호 특성을 분석하기 위하여 강자성 공명 신호로부터 측정한 교환 바이어스($H_{ex}$ = 58.5 Oe) 및 일축 이방성 자기장($H_k$ = 30Oe)을 S-W model에 적용하여 자화과정의 횡방향 자화량(transverse magnetization, $M_{\tau}$) 및 투자율(transverse susceptibility, ${\mu}_{\tau}$)을 계산하였다. 자화 곤란축에서 측정된 LFMA 신호는 $M_{\tau}$ 비례하는 경향을 보였지만, 자화 곤란축과 수직 방향으로 접근하면 $M_{\tau}$${\mu}_{\tau}$ 모두에 의존하는 특성을 보였다.

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

스파이럴 이동자 코어를 가지는 영구자석여자 횡자속 선형전동기의 등가자기회로망법을 이용한 특성해석 (Characteristic Analysis using Equivalent Magnetic Circuit Network Method for Permanent Magnet Excited Transverse Flux Linear Motor with Spiral Core in a Mover)

  • 이지영;김지원;우병철;강도현;호앙트룽키엔;김광운
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.794_795
    • /
    • 2009
  • This paper presents an analysis method for a permanent magnet excited Transverse Flux Linear Motor (TFLM) with spiral core in a mover. The spiral core is used as mover core in order to make 3-dimensional magnetic flux path at the TFLM which has 3-dimensional magnetic flux flow. Magnetic field is analyzed by three-dimensional Equivalent Magnetic Circuit Network (EMCN) method. And an imaginary part, 'flux barrier,' is introduced to consider the spiral core characteristic. The computed thrust forces is compared to the measured results to show the effect of presented analysis method.

  • PDF

이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정 (Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation)

  • 음영환;김홍정;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권5호
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • 천문학회지
    • /
    • 제32권1호
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

GTEM-CELL의 균일한 필드구조를 갖기위한 최적화 분석 (Optimization Analysis for Homogeneous Field Structure of GTEM-CELL)

  • 김종성;강서;정성일;이한영;이종악
    • 전기전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.218-222
    • /
    • 2003
  • 전자파 방사 및 측정 시험설비로 표준 시험장인 야외시험장을 사용하고 있으나 시험장 구축의 어려움으로 이를 대체할 수 있는 대용시험장을 사용하여 측정시험을 할 수 있도록 하고 있다. 본 논문에서는 최적화된 측정시스템을 구성하기 위한 대용시험시설인 GTEM CELL(Gigahertz Transverse Electro Magnetic Cell)의 구조분석 및 설계를 하기 위하여 내부도체(Septum)의 넓이 및 두께 변화에 따른 내부도체의 특성임피던스 변화를 살펴보았다.

  • PDF

1kW급 리럭턴스 동기 전동기의 특성해석 (A characteristic analysis of the 1kW Reluctance Synchronous Motor)

  • 최경호;김남훈;백원식;김동희;황돈하;김민회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.119-122
    • /
    • 2002
  • This paper presents detailed characteristic of a Reluctance Synchronous Motor(RSM) which has a transverse-laminated rotor. First of all, the analysis of a magnetic circuit field between stator and rotor should be achieved in order to predict the performance characteristic of the RSM. For the analysis of a magnetic circuit field, the Finite Element(FE) analysis and a experimental method are used. The analytical result of the inductance flux distribution, vector potential, and the output shows some good characteristic along with the load condition.

  • PDF

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

  • Kiani, Keivan;Gharebaghi, Saeed Asil;Mehri, Bahman
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.65-76
    • /
    • 2017
  • Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.