• Title/Summary/Keyword: transverse compressive stress

Search Result 69, Processing Time 0.033 seconds

Evaluation of Structural Performance of RC T-shaped Walls with Different ratios of axial load and vertical reinforcement (압축력비와 수직철근비에 따른 RC T형 벽체의 구조성능 평가에 관한 해석적 연구)

  • 하상수;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.403-408
    • /
    • 2003
  • The objective of this study is to understand the variables affected the confinement for the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The structural performance of T-shaped walls was advanced by the transverse reinforcement which restrained the concrete subjected to compressive stress. If the arrangement of transverse reinforcement was not suitable for the confinement, T-shaped walls happened the brittle failure by web crushing or bucking of vertical reinforcement at the compression zone. It is necessary to confine transverse reinforcement in order to prevent the these failure. But the location of neutral axis and the magnitude of ultimate strain vary according to the section shape, a ratio of axial load, a ratio of wall cross sectional area to the floor-plan area, an aspect ratio and the reinforcement ratio. Therefore, the objective of this research is to grasp the location of neutral axis and the range which needs for the confinement of transverse reinforcement through the results of the sectional analysis which varies the ratio of axial load and the ratio of vertical reinforcement.

  • PDF

Damage Detection and Suppression in Composites Using Smart Technologies

  • Takeda, Nobuo
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.26-36
    • /
    • 2001
  • Smart sensors and actuators have recently been developed. In this study, first, small-diameter fiber Bragg grating (FBG) sensors developed by the author, whose cladding and polyimide coating diameters were 40 and $52{\mu}m$, respectively, were embedded inside a laminate without resin-rich regions around sensors and the deterioration of mechanical properties of the composite laminate. The small-diameter FBG sensor was embedded in $0^{\circ}$ ply of a CFRP laminate for the detection of transverse cracks in $90^{\circ}$ ply of the laminate. The reflection spectra from the FBG sensor were measured at various tensile stresses. The spectrum became broad and had some peaks with an increase of the transverse crack density. Furthermore, the theoretical calculation reproduced the change in the spectrum very well. These results show that the small-diameter FBG sensors have a potential to detect the occurrence of transverse cracks through the change in the form of the spectrum, and to evaluate the transverse crack density quantitatively by the spectrum width. On the other hand, shape memory alloy (SMA) films were used to suppress the initiation and growth of transverse cracks in CFRP laminates. Pre-strained SMA films were embedded between laminas in CFRP laminates and then heated to introduce the recovery stress in SMA films and compressive stresses in the weakest plies ($90^{\circ}$ ply). The effects of recovery stresses are demonstrated in the experiments and well predicted using the shear-lag analysis and the nonlinear constitutive equation of SMA films.

  • PDF

Ductility Capacity of Slender-Wind R/C Walls (긴 세장한 R/C 벽체의 연성능력)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.202-212
    • /
    • 2000
  • This study investigates the ductility capacity of slender-wide reinforced concrete walls under predominant flexural moment loading. The experimental work for this study aims to provide design guidelines for bar detailing in critical regions under compressive stress in particular in case of slender-wide RC walls. According to the experimental observation the Bernoulli hypothesis of linear strain distribution is no longer valid and the ultimate compressive strain of concrete is significantly reduced, It is postulated that the nonlinear strain distribution causes the concentrated compressive stressed region and hence the premature crushing failure at the toe of walls. The reduced ultimate strain and nonlinear strain distribution need transverse reinforcement for confinement and more realistic models for the strength and displacement estimation of slender-wide RC wall.

  • PDF

A Stusy on the Coupled Vibration of Train Wheel and Pail - Dynamic Characteristics of Train Wheel with the Stepped Thickness - (車輪과 鐵路의 連成振動에 관한 硏究)

  • 김광식;박민태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 1987
  • This study is a part of the research on the coupled vibration of train wheel with the stepped thickness and rail. The research was conducted for the purpose of examining the dynamic characteristics of train wheel at the running state and preventing the vibrations of the high speed railway. The stress at the boundary surface of web and rim, .sigma.$_{c}$, was analyzed in consideration of the uniform In-plane compressive stress depending on the conditions of rolling and the In-plane compressive stress depending on the rotation of train wheel. Then the equation of transverse vibration of the annular plate with the stepped thickness was analyzed by Rayleigh-Ritz's method. As a result of study, it was known that the rotational speed increase the natural frequency slightly and the acceleration level highly while the reaction force between train wheel and rail decrease the natural frequency linearly and the critical buckling is generated at n=1.

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.

A Study on the Prediction of the Strength and Axial Strain of High-Strength Concrete Columns Confined by Tie Reinforcement (띠근 보강 고강도 콘크리트 기둥의 강도 및 축변형 특성 산정에 관한 연구)

  • Park, Hoon-Gyu;Jang, Il-Young
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.197-208
    • /
    • 1999
  • The use of high-strength concrete which permits smaller cross sections, reduced dead loads, and longer spans has been getting more popular in tall buildings. However, there has been little research on behavior of high-strength concrete columns laterally reinforced with square ties and subjected to compressive loading. With the addition of transverse reinforcement which lead to triaxial compressive state, ductility behavior of high-strength column member shall be increased. In this study, rational quality and quantity evaluations were made to investigate the ultimate strength and strain ductility by confinement effect of tie reinforced high-strength concrete columns subject to uniaxial loads. Concrete failure theory at the triaxial compressive state and statistical results based on conventional experimental data were applied for this propose. Up to 185 columns, tested under monotonically increasing concentric loading, were evaluated in terms of strength and strain ductility. Analytical results show that confinement stress, maximum compressive strength, and increase of strain equations were developed with the consideration of concrete strength, yield strength, spacing, volumetric ratio, and configurations of tie reinforcement.

Confinement Range of Transverse Reinforcements for T-shaped Reinforced Concrete Walls (철근콘크리트 T형 벽체의 콘크리트 구속을 위한 횡철근의 배근범위)

  • 하상수;오영훈;최창식;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1001-1009
    • /
    • 2002
  • The objective of this study is to determine the range of confinement (or the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The range of confinement for transverse reinforcement is related to the location of neutral axis and determined by the magnitude and distribution of compressive strain. The compressive strain depends on the ratio of wall cross sectional area to the floor-plan area, the aspect ratio, configuration, the axial load, and the reinforcement ratios. By affection of flange, the neutral axis appears different depending on positive and negative forces and because of this reason, when web and flange are subjected to compressive stress, the range of confinement for the transverse reinforcement of T-shaped walls would shows different result. Therefore this experimental research focused on the structural characteristics of T-shaped walls and suggested the neutral axis depth through comparing the results of this study with sectional analysis.

A FINITE ELEMENT ANALYSIS ON THE EFFECT OF THE HEADGEAR IN HUMAN MAXILLA (HEAD GEAR가 상악골에 미치는 영향에 관한 유한요소법적 분석)

  • Lee, In-Soo;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.15 no.2
    • /
    • pp.211-227
    • /
    • 1985
  • The purpose of this study was to analyze the stress distribution and the displacement in the maxillary complex after the application of the three kinds of the head gear. (high pull head gear, straight pull head gear, cervical pull head gear.) Orthopedic force, 300 gram, was applied to the maxilla of the dry human skull in a high, straight and cervical direction. The stress distribution and the displacement within the maxillary complex was analyzed by a 3-dimensional finite element method. The results were as follow: 1. In won, the stress of conical pull head gear was the greatest stress and straight pull head gear was the medium stress and high pull head gear was the least stress. 2. The compressive stress was observed on the anterior portion of premaxilla, especially anterior nasal spine area, when the three kinds of head gear were applied to the dry kuman skull. 3. It appeared that the stress of the anterior portion of the zygomatic bone was greater than the posterior portion in the case of three kinds of head gear application and compressive stress was noted only at the below of the frontozygomatic suture of the zygomatic bone. 4. The backward, upward, sideward displacement of the alveolar area was observed in a high pull head gear application but in the case of straight pull head gear and cervical pull head gear application, the backward, downward, sideward displacement was observed. 5. The forward, downward, sideward displacement was observed on the midpalatine suture and premaxilla on the sagittal plane and transverse palatine suture in the case of three kinds of headgear application.

  • PDF

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Analysis of residual drying stress in Larix Kaempferi wood used as glulam laminar (집성재 라미나용 낙엽송 재내 잔류 건조응력 변화 분석)

  • Han, Yeonjung;Chang, Yoon-Seong;Park, Yonggun;Jeong, Gi-Young;Hong, Jung-Pyo;Lee, Jun-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.535-543
    • /
    • 2013
  • The objective of this study was to analyse the residual stress in Larix kaempferi board during and after kiln-drying. The boards were primarily intended for using as laminar of cross laminated timber (CLT). In this study, the equivalence of moisture content by equalizing treatment was proved and reduction of residual stress by conditioning treatment was quantified. Prong test and slice test were carried out to analyse the residual stress in wood during drying. Transverse casehardening was measured immediately after making prong sample. Residual stress of four parts in wood from surface to center was analyzed quantitatively based on elastic deformation after just cutting slices from board. Tensile stress and compressive stress on the surface of board during drying did not exceed 2.2 MPa when boards were dried by kiln-drying schedule of T10-C4 and T12-D5. Because the tensile strength and compressive strength of transverse direction of Larix kaempferi lumber are 2.65 MPa and 4.60 MPa, application of more severe drying schedule can be recommended. Cup and twist were reduced by about 40% by equalizing and conditioning treatments after drying.