• Title/Summary/Keyword: transverse beam

Search Result 630, Processing Time 0.023 seconds

Dynamic Analysis of a Three-dimensional Catenary System Using the Finite Element Method (유한요소해석을 이용한 3 차원 전차선로의 동특성 분석)

  • Lee, Kyo-Ho;Cho, Yong-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1306-1313
    • /
    • 2009
  • Dynamic and static behaviors of a three-dimensional catenary system for a high-speed railway are analyzed by using the finite element method. Considering tensions in the contact wire and the messenger wire, we drive the equations of motion for the catenary system. These equations are for the longitudinal, transverse, vertical and torsional motions. After establishing the weak form, the weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations, a finite element computer program is developed for the static and dynamic analyses. The static deflections of the catenary system, which are important for good contact between the pantograph and the contact line, are computed when the gravity is applied. On the other hand, we analyze the natural frequencies and the corresponding natural modes of the catenary system. The dynamic responses of the system are also investigated when applying a load to the contact line. For verification of the developed finite element program, vibrations of the catenary system are measured and they are compared to computed time responses.

Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming

  • Golafshani, Emadaldin Mohammadi;Rahai, Alireza;Kebria, Seyedeh Somayeh Hosseini
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents the application of multi-gene genetic programming (MGP) technique for modeling the bond strength of ribbed steel bars in concrete. In this regard, the experimental data of 264 splice beam tests from different technical papers were used for training, validating and testing the model. Seven basic parameters affecting on the bond strength of steel bars were selected as input parameters. These parameters are diameter, relative rib area and yield strength of steel bar, minimum concrete cover to bar diameter ratio, splice length to bar diameter ratio, concrete compressive strength and transverse reinforcement index. The results show that the proposed MGP model can be alternative approach for predicting the bond strength of ribbed steel bars in concrete. Moreover, the performance of the developed model was compared with the building codes' empirical equations for a complete comparison. The study concludes that the proposed MGP model predicts the bond strength of ribbed steel bars better than the existing building codes' equations. Using the proposed MGP model and building codes' equations, a parametric study was also conducted to investigate the trend of the input variables on the bond strength of ribbed steel bars in concrete.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF

Automatic Design of Steel Frame Using Nonlinear Analysis (비선형 해석을 이용한 강뼈대구조물의 자동화설계)

  • Kim, Chang Sung;Ma, Sang Soo;Choi, Se Hyu;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.339-348
    • /
    • 2002
  • The study developed an automatic design method of steel frames which uses nonlinear analysis. The geometric nonlinearity was considered using stability functions. Likewise, the transverse shear deformation effect in a beam-column was explained. A direct search method was used as an automatic design technique. The unit value of each part was evaluated using LRFD interaction equation. The member with the largest unit value was replaced one by one with an adjacent larger member selected from the database. The weight of the steel frame was considered as an objective function. On the other hand, load-carrying capacities, deflections, inter-story drifts, and ductility requirement were used as constraint functions. Case studies of a two-dimensional and a three-dimensional two-story frames were presented.

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damaged RC frames

  • Duran, Burak;Tunaboyu, Onur;Kaplan, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.233-244
    • /
    • 2018
  • This study aims at evaluating the performance of repairing technique with CFRPs in recovering cyclic performance of damaged columns in flexure in terms of structural response parameters such as strength, dissipated energy, stiffness degradation. A 2/3 scaled substandard reinforced concrete frame was constructed to represent the substandard RC buildings especially in developing countries. These substandard buildings have several structural deficiencies such as strong beam-weak column phenomenon, improper reinforcement detailing and poor material properties. Flexural plastic hinges occurred at the columns ends after testing the substandard specimen under both constant axial load and reversed cyclic lateral loading. Afterwards, the damaged columns were externally wrapped with CFRP sheets both in transverse and longitudinal directions and then retested under the same loading protocol. In addition, ambient vibration measurements were taken from the undamaged, damaged and the repaired specimens at each structural repair steps to identify the effectiveness of each repairing step by monitoring the change in the natural frequencies of the tested specimen. The ambient vibration test results showed that the applied repairing technique with external CFRP wrapping was proved to recover stiffness of the pre-damaged specimen. Moreover, the lateral load capacity of the pre-damaged substandard RC frame was restored with externally bonded CFRP sheets.

Dynamic Response Analysis of Rotating Composite-VEM Thin-Walled Beams Incorporating Viscoelastic Materials in the Time Domain

  • Na Sung-Soo;Park Jae-Yong;Park Chul-H.;Kwak Moon-K.;Shim Jae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1139-1148
    • /
    • 2006
  • This paper addresses the analytical modeling and dynamic response of the advanced composite rotating blade modeled as thin-walled beams and incorporating viscoelastic material. The blade model incorporates non-classical features such as anisotropy, transverse shear, rotary inertia and includes the centrifugal and coriolis force fields. The dual technology including structural tailoring and passive damping technology is implemented in order to enhance the vibrational characteristics of the blade. Whereas structural tailoring methodology uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The case of VEM spread over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on the dynamic response of a rotating thin-walled b ε am exposed to external time-dependent excitations.

Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Khan, Muhammad Shabaz;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.411-425
    • /
    • 2020
  • In this paper, the shell material has been taken as functionally graded material and their material quantity is located by the exponential volume fraction law. Moreover, the impact of ring supports around the shell circumference has been examined for their various positions along the shell axial length. These rings support restraints the radial displacement in the transverse direction. While the axial modal deformation functions have been estimated by characteristic beam functions and nature of materials used for construction of cylindrical shells. The fundamental natural frequency of cylindrical shell of parameter versus ratios of length- and height-to-radius for a wide range has been reported and investigated through the study. In addition, by increasing height-to-radius ratio resulting frequencies also increase and frequencies decrease on ratio of length-to-radius. Though the trends of frequency values of both ratios are converse to each other with three different boundary conditions. Also it is examined the position of ring supports with length-to radius ratio, height-to-radius ratio and varying the exponent of volume fraction. MATLAB software package has been utilized for extracting shell frequency spectra. The obtained results are confirmed by comparing with available literature.

Flow-induced Instability of Multi-wall Carbon Nanotubes for Various Boundary Conditions (경계조건에 따른 다중벽 탄소나노튜브의 유체유발 불안정성 변화)

  • Yun, Kyung-Jae;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.805-815
    • /
    • 2010
  • This paper studies the influence of internal moving fluid and flow-induced structural instability of multi-wall carbon nanotubes conveying fluid. Detailed results are demonstrated for the variation of natural frequencies with flow velocity, and the flow-induced divergence and flutter instability characteristics of multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam are investigated. Effects of various boundary conditions, Van der Waals forces, and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin's method which enables us to obtain more exact solutions compared with conventional Galerkin's method. This paper also presents the comparison between the characteristics of single-wall and multi-wall carbon nanotubes considering the effect of van der Waals forces. Variations of critical flow velocity for different boundary conditions of two-wall carbon nanotubes are investigated and pertinent conclusion is outlined.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.