• Title/Summary/Keyword: transverse beam

Search Result 629, Processing Time 0.022 seconds

CU+ ION EXTRACTION FROM A MODIFIED BERNAS ION SOURCE IN A METAL-ION IMPLANTER

  • Hong, In-Seok;Lee, Hwa-Ryun;Trinh, Tu Anh;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.709-714
    • /
    • 2009
  • An ion implanter, which can serve as a metal-ion supply, has been constructed and performance tested. Copper ions are generated and extracted from a Bernas ion source with a heating crucible that provides feed gases to sustain the plasma. Sable arc plasmas can be sustained in the ion source for a crucible temperature in excess of $350^{\circ}C$. Stable extraction of the ions is possible for arc Currents less than 0.3 A. Arc currents increase with the induced power of a block cathode and the transverse field in the ion source. $Cu^+$ ions in the extracted beam are separated using a dipole magnet. A $20{\mu}A$ $Cu^+$ ion current can be extracted with a 0.2 A arc current. The ion current can support a dose of $10^{16}ions/cm^2$ over an area of $15\;cm^2$ within a few hours.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Geometric Nonlinear F.E. Analysis of Plane Frames Including Effects of the Internal Hinge (내부(內部)힌지효과(效果)를 고려(考慮)한 평면(平面) 뼈대구조(構造)의 기하학적(幾何學的)인 비선형(非線型) 유한요소해석(有限要素解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.93-103
    • /
    • 1994
  • Two beam/column elements are developed in order to analyze the geometric nonlinear plane irames including the effects of internal hinge and transverse shear deformation. In the case of the first element (finite segment method), tangent stiffness matrix is derived by directly integrating the equilibrium equations whereas in the case of the second element (finite element method) elastic and goemetric stiffness matrices are calculated by using the hermitian polynomials including the effects of internal hinge and shear deformation as the shape function. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

A Study on the Chimi Excavated from the Middle Gate Remains of Bunhwangsa Temple (분황사 중문지 출토 치미 연구)

  • Kim, Sookyung
    • Journal of architectural history
    • /
    • v.26 no.5
    • /
    • pp.19-26
    • /
    • 2017
  • This paper aimed to identify the architectural characteristics of the chimi excavated from ancient ruins, especially middle gate remains of Bunhwangsa Temple in the Unified Silla period. Middle gate had planned $3{\times}2$ with 295mm measuring unit and gabled building. Detailed study of the shape of chimi of the middle gate restored by related field experts reveals as follows. 1) Height of chimi is 4.5(130.6cm) of Tang's system of measurement classified as large one. 2) The front and back side square hole is made for transverse timber placement. 3) Position of chimi is not the end of the ridge of roof, it moved toward the center. 4) Construction method of chimi is structured with smaller beam and center column. 5) Width and height of the ridge is less than 38cm and 54cm to be approximately, Width and height of the gabled ridge is less than 38cm and 50cm. 6) This chimi is considered to be very unique when compared to existing ancient restored chimis, it is designed to be advantageous to the chimi construction.

Investigation on the seismic performance of T-shaped column joints

  • Chen, Changhong;Gong, He;Yao, Yao;Huang, Ying;Keer, Leon M.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.335-344
    • /
    • 2018
  • More and more special-shaped structural systems have been widely used in various industrial and civil buildings in order to satisfy the new structural system and the increasing demand for architectural beauty. With the popularity of the special-shaped structure system, its seismic performance and damage form have also attracted extensive attention. In the current research, an experimental analysis of six groups of (2/3 scale) T-shaped column joints was conducted to investigate the seismic performance of T-shaped column joints. Effects of the beam cross section, transverse stirrup ratio and axial compression ratio on bearing capacity and energy dissipation capacity of column joints were obtained. The crack pattern of T-shaped column joints under low cyclic load was presented and showed a reversed "K" mode. According to the crack configurations, a tensile-shear failure model to determine the shear bearing capacity and crack propagation mechanisms is developed.

Dose Distribution in the Brain in Radiotherapy of Whole Brain (전뇌조사시(全腦照射時) 뇌(腦)에 있어서의 선량분포(線量分布))

  • Kang, Wee Saing;Ha, Sung Whan;Park, Charn Il
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 1983
  • Whole brain irradiation is one mode in the treatment of brain cancer and brain metastasis, but it might cause brain injury such as brain necrosis. It has been studied whether the dose distribution could be a cause of brain injury. The dose distribution in whole brain irradiated by Co-60 beam has been measured by means of calibrated TLD chips inserted in the brain of Humanoid phantom. The following results were obtained. 1. Dose distribution on each transverse section of the brain was uniform. 2. On the midsagital plane of the brain, the dose was highest in upper portion and lowest in lower portion, varying 8 from 104% to 90%. 3. When the radiation field includes free space of 2cm or more width out of the head, the dose distribution in the whole brain is almost independent of the field width. 4. It is important to determine adequate shielding area and to set shielding block exactly in repetition of treatment.

  • PDF

New Non-linear Modelling for Vibration Analysis of a Straight Pipe Conveying Fluid (유체를 이송하는 직선관의 진동 해석을 위한 새로운 비선형 모델링)

  • Lee, Su-Il;Jeong, Jin-Tae;Im, Hyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.514-520
    • /
    • 2002
  • A new non-linear modelling of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the generalized-$\alpha$ time integration method to the non-linear discretized equations. The validity of the new modelling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by Paidoussis.

Application of a Boundary element Method to the Analysis of ultrasonic Scattering by Flaws (경계요소법을 이용한 결함의 초음파 산란장 해석)

  • Jeong, Hyun-Jo;Kim, Jin-Ho;Park, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2457-2465
    • /
    • 2002
  • Numerical modeling of a nondestructive testing system plays an important role in many aspects of quantitative nondestructive evaluation (QNDE). The ultimate goal of a model is to predict test results for a specific flaw in a material. Thus, in ultrasonic testing, a system model should include the transducer, its radiation pattern, the beam reflection and propagation, and scattering from defects. In this paper attention is focused on the scattering model and the scattered fields by defects are observed by an elastodynamic boundary element method. Flaw types addressed are void-like and crack-like flaws. When transverse ultrasonic waves are obliquely incident on the flaw, the angular distribution of far-field scattered displacements are calculated and presented in the form of A-scan mode. The component signals obtained from each scattering problem are identified and their differences are addressed. The numerical results are also compared with those obtained by high frequency approximate solutions.

Theoretical Stiffness of Cracked Reinforced Concrete Elements (철근콘크리트 부재의 균열 후 강성 이론)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.79-88
    • /
    • 1999
  • The purpose of this paper is to develop a mathematical expression for computing crack angles based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed to possess a series of potential crack planes represented by a number of differential truss elements. Depending on the boundary condition, a constant angle truss or a variable angle truss is employed to model the cracked structural concrete member. The truss models are then analyzed using the virtual work method of analysis to relate forces and deformations. Rigorous and simplified solution schemes are presented. An equation to estimate the theoretical crack angle is derived by considering the energy minimization on the virtual work done over both the shear and flexural components the energy minimization on the virtual work done over both the shear and flexural components of truss models. The crack angle in this study is defined as the steepest one among fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The theoretical crack angle predictions are validated against experimentally observed crack angle reported by previous researchers in the literature. Good agreement between theory and experiment is obtained.

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.