• Title/Summary/Keyword: transportation robot

Search Result 86, Processing Time 0.027 seconds

Development of Intelligent Excavating System - Introduction of research progress - (지능형 굴삭시스템 개발 - 2차 년도 연구내용 -)

  • Seo, Jong-Won;Kim, Young-Wook;Jang, Dal-Sik;Lee, Seung-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.184-192
    • /
    • 2008
  • Recently, one of the solutions for the problems of construction industry such as low productivity, lack of experts, insufficiency of manpower, high percentage of calamity and so forth, construction automation which let underdeveloped construction production system be a ultramodern technology is under research. Internal study of construction automation has been initiated since 1980s focusing on robotics and semi-automation for reduction of labor. Therefore development of construction robots is being concentrated with the high development of information technology and Intelligent Excavating System(IES) project had been launched by ministry of land, transportation, and maritime affairs as one way of construction technology revolution business. This study introduces the final goal and the research progress until second year of IES.

  • PDF

A Study on Autonomous Stair-climbing System Using Landing Gear for Stair-climbing Robot (계단 승강 로봇의 계단 승강 시 랜딩기어를 활용한 자율 승강 기법에 관한 연구)

  • Hwang, Hyun-Chang;Lee, Won-Young;Ha, Jong-Hee;Lee, Eung-Hyuck
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.362-370
    • /
    • 2021
  • In this paper, we propose the Autonomous Stair-climbing system based on data from ToF sensors and IMU in developing stair-climbing robots to passive wheelchair users. Autonomous stair-climbing system are controlled by separating the timing of landing gear operation by location and utilizing state machines. To prove the theory, we construct and experiment with standard model stairs. Through an experiment to get the Attack angle, the average error of operating landing gear was 2.19% and the average error of the Attack angle was 2.78%, and the step division and status transition of the autonomous stair-climbing system were verified. As a result, the performance of the proposed techniques will reduce constraints of transportation handicapped.

Research of the Delivery Autonomy and Vision-based Landing Algorithm for Last-Mile Service using a UAV (무인기를 이용한 Last-Mile 서비스를 위한 배송 자동화 및 영상기반 착륙 알고리즘 연구)

  • Hanseob Lee;Hoon Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.160-167
    • /
    • 2023
  • This study focuses on the development of a Last-Mile delivery service using unmanned vehicles to deliver goods directly to the end consumer utilizing drones to perform autonomous delivery missions and an image-based precision landing algorithm for handoff to a robot in an intermediate facility. As the logistics market continues to grow rapidly, parcel volumes increase exponentially each year. However, due to low delivery fees, the workload of delivery personnel is increasing, resulting in a decrease in the quality of delivery services. To address this issue, the research team conducted a study on a Last-Mile delivery service using unmanned vehicles and conducted research on the necessary technologies for drone-based goods transportation in this paper. The flight scenario begins with the drone carrying the goods from a pickup location to the rooftop of a building where the final delivery destination is located. There is a handoff facility on the rooftop of the building, and a marker on the roof must be accurately landed upon. The mission is complete once the goods are delivered and the drone returns to its original location. The research team developed a mission planning algorithm to perform the above scenario automatically and constructed an algorithm to recognize the marker through a camera sensor and achieve a precision landing. The performance of the developed system has been verified through multiple trial operations within ETRI.

Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation (물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구)

  • Yeong Jun Yu;SeongHoon Kang;JuHwan Kim;SeongIn No;GiHyeon Lee;Seung Yong Lee;Chul-hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.

Technical Advances in Robotic Pavement Crack Sealing Machines and Lessons Learned from the Field (도로면 유지보수를 위한 크랙실링 자동화 로봇의 개발과 응용 -현장적용을 통한 실험 결과 분석을 중심으로-)

  • Kim Young-Suk;Carl T. Haas;Sung Baek-Jun;Oh Se-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.1 s.1
    • /
    • pp.87-94
    • /
    • 2000
  • Crack sealing, a routine and necessary part of pavement maintenance, is a dangerous, costly, and labor-intensive operation. Within the North America, about ${\$}200$ million is spent annually on crack sealing, with the Texas Department of Transportation (TxDOT) spending about ${\$}7$ million annually (labor alone accounts for over 50 percent of these costs). Prompted by concerns of safety and cost, the University of Texas at Austin, in cooperation with TxDOT and the Federal Highway Administration (FHWA) has developed a unique computer-guided Automated Road Maintenance Machine (ARMM) for pavement crack sealing. In 1999, successful field tests have been undertaken in 8 States around the U.S. This paper first describes significance of the automated crack sealing and technical advances in automated crack sealers including the ARMM, developed in the U.S. It then discusses the ARMM's field implementation and performance evaluation results, and improvements and modifications suggested through the technology evaluation during the field trials. Current research efforts and future work plans in its further development are also presented in this paper.

  • PDF

Effective Utilization of Domain Knowledge for Relational Reinforcement Learning (관계형 강화 학습을 위한 도메인 지식의 효과적인 활용)

  • Kang, MinKyo;Kim, InCheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • Recently, reinforcement learning combined with deep neural network technology has achieved remarkable success in various fields such as board games such as Go and chess, computer games such as Atari and StartCraft, and robot object manipulation tasks. However, such deep reinforcement learning describes states, actions, and policies in vector representation. Therefore, the existing deep reinforcement learning has some limitations in generality and interpretability of the learned policy, and it is difficult to effectively incorporate domain knowledge into policy learning. On the other hand, dNL-RRL, a new relational reinforcement learning framework proposed to solve these problems, uses a kind of vector representation for sensor input data and lower-level motion control as in the existing deep reinforcement learning. However, for states, actions, and learned policies, It uses a relational representation with logic predicates and rules. In this paper, we present dNL-RRL-based policy learning for transportation mobile robots in a manufacturing environment. In particular, this study proposes a effective method to utilize the prior domain knowledge of human experts to improve the efficiency of relational reinforcement learning. Through various experiments, we demonstrate the performance improvement of the relational reinforcement learning by using domain knowledge as proposed in this paper.