• Title/Summary/Keyword: transport mechanism

Search Result 893, Processing Time 0.024 seconds

Mechanism of a Spray Transport on Intake Manifold Walls (흡기매니폴드내 벽면으로의 연료수송)

  • Lee, G.Y.;Jeon, H.S.;Park, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 1996
  • Study on the mechanism of droplet transport and the droplet eddy diffusivity in the intake manifold of internal conbustion engine with carburetor has been carried out in this paper The theory and experiments were studied and performed respectively, to elucidate the mechanism and to measure typical rates of deposition, on the walls of a straight type intake manifold, of water droplets suspended in a turbulent air streams. Accordingly, the results are that Mechanism of a spray transport to the walls is caused by the fluctuation component of radial velocity. Deposition rate of a spray on the walls is mainly dependent upon air velocity and mean diameter of spray, and Droplet eddy diffusivity in the intake manifold is around $80\sim105cm^2/sec$.

  • PDF

Flame Behaviors of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화염거동)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.57-63
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame behaviors of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

  • PDF

Efficient Media Synchronization Mechanism for SVC Video Transport over IP Networks

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.441-450
    • /
    • 2008
  • The scalable extension of H.264, known as scalable video coding (SVC) has been the main focus of the Joint Video Team's work and was finalized at the end of 2007. Synchronization between media is an important aspect in the design of a scalable video streaming system. This paper proposes an efficient media synchronization mechanism for SVC video transport over IP networks. To support synchronization between video and audio bitstreams transported over IP networks, a real-time transport protocol/RTP control protocol (RTP/RTCP) suite is usually employed. To provide an efficient mechanism for media synchronization between SVC video and audio, we suggest an efficient RTP packetization mode for inter-layer synchronization within SVC video and propose a computationally efficient RTCP packet processing method for inter-media synchronization. By adopting the computationally simple RTCP packet processing, we do not need to process every RTCP sender report packet for inter-media synchronization. We demonstrate the effectiveness of the proposed mechanism by comparing its performance with that of the conventional method.

  • PDF

Species Transport Mechanisnn and Flame Structure of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화학종 전달기구 및 화염구조)

  • Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1407-1416
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame structure of CH$_4$/$N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry were adopted in this computation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

THE ACCELERATION AND TRANSPORT OF COSMIC RAYS WITH HELIOSPHERIC EXAMPLES

  • JOKIPII J. R.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.399-404
    • /
    • 2004
  • Cosmic rays are ubiquitous in space, and are apparently present wherever the matter density is small enough that they are not removed by collisions with ambient particles. The essential similarity of their energy spectra in many different regions places significant general constraints on the mechanisms for their acceleration and confinement. Diffusive shock acceleration is at present the most successful acceleration mechanism proposed, and, together with transport in Kolmogorov turbulence, can account for the universal specta. In comparison to shock acceleration, statistical acceleration, invoked in many situations, has significant disadvantages. The basic physics of acceleration and transport are discussed, and examples shown where it apparently works very well. However, there are now well-established situations where diffusive shock acceleration cannot be the accelerator. This problem will be discussed and possible acceleration mechanism evaluated. Statistical acceleration in these places is possible. In addition, a new mechanism, called diffusive compression acceleration, will be discussed and shown to be an attractive candidate. It has similarities with both statistical acceleration and shock acceleration.

Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface (친수성/소수성 복합표면상에서 초기 구형 액적의 이송 메커니즘)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.871-884
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

Charge Transport Phenomena of Polyaniline-DBSA/Polystyrene Blends (폴리 아닐 린-DBSA/폴리스타이렌 블렌드의 전하 이동 현상)

  • 김원중;김태영;고정우;김윤상;박창모;서광석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.305-311
    • /
    • 2004
  • Charge transport phenomena of polyaniline-DBSA/High Impact Polystyrene (PAM-DBSA/HIPS) blends have been studied through an examination of electrical conduction. HIPS used host polymer in the blends and PANI-DBSA obey a space charge limited conduction mechanism and a ohmic conduction mechanism respectively. However, PANI-DBSA/HIPS blends do not obey any classical conduction mechanism. Analysis of conduction mechanism revealed that the charging current of PANI-DBSA/HIPS blends increased with the increase of PANI-DBSA content. This result migrlt be explained by the reduction in the distance between PANI-DBSA particles enabling the charge carriers to migrate from a chain to a neighboring chain via hopping or micro tunneling. It was also found that the charging current of PANI-DBSA/HIPS blends decreased as the temperature was elevated, which is of typical phenomena in metals. It is speculated that the charge transport in PANI-DBSA particle was somewhat constrained due to strong phonon scattering.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants I: 2D frontal model experiment (대기오염물질의 연직 수송에 미치는 전선의 역할 I: 2차원 전선모델을 이용한 수송 실험)

  • Nam, Jae-Cheol;Thorpe, Alan
    • Atmosphere
    • /
    • v.14 no.3
    • /
    • pp.29-40
    • /
    • 2004
  • It is well known that convections and fronts are the most effective weather systems for the vertical transport of pollutants. I used a two dimensional front model in order to investigate the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. The main dynamic processes which contribute the vertical transport of pollutants are advection and diffusion. The transported amount of pollutant from the boundary layer to the free atmosphere increases dramatically during the developing stage of the front. 46% of pollutants are transported vertically within 12 hour and 54% are transported within 24 hour. In the meantime, compared to the total amount of pollutants transported by both advection and diffusion, about 25% (30%) less pollutants are transported when only advection (diffusion) process in included in the model. The most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

IN VIVO INVESTIGATION ON THE INTESTINAL ABSORPTION OF VITAMIN A-ALCOHOL (RETINOL) IN RATS

  • Whang, Eun-Mi;Burger, Hans-Jurgen
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.05c
    • /
    • pp.21-21
    • /
    • 1995
  • Absorption of fat-soluble vi tamin, retinol occurs mainly in the proximal part of small intestine. But its intestinal transport mechanism isn't yet clear. The aim of the present study was to investigate on the mechanism of absorption of retinol by determining a concentration-dependent kinetic of retinol absorption in rats. The study was carried out by applying in vivo technique in which vitamin solution was infused to intestinal lumen and at the same time thoracic duct and choledochus duct were canulated to collect samples. The investigations showed that retinol is absorbed in the small intestine by a saturable, carrier-mediated transport system, i.e. wi thout signi ficant differences between the proximal and distal halves of the small intestine. The transport of retinol taken up by the enterocytes occured via different mechanisms: while the main vitamin A transport via the thoracic duct was saturated by limiting transport factors such as retinol-CRBP-II-complex formation and retinol esterification with increasing substrate concentrations, the transport of retinol metabolite product via the portal vein was proportional to the substrate concentration.ration.

  • PDF