• Title/Summary/Keyword: transport and diffusion

Search Result 728, Processing Time 0.027 seconds

Origin of Nonlinear Device Performance with Illuminated Sun Intensity in Mesoscopic Sb2S3-sensitized Photoelectrochemical Solar Cells using Cobalt Electrolyte

  • Im, Sang-Hyuk;Lee, Yong-Hui;Kim, Hi-Jung;Lim, Choong-Sun;Kang, Yong-Ku;Seok, Sang-Il
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • The mesoscopic $Sb_2S_3$-sensitized photoelectrochemical solar cells using cobalt redox electrolyte exhibit nonlinear behavior of power conversion efficiency with illuminated sun intensity. From the measurement of bulk diffusion and electrochemical impedance spectroscopy studies, we suggest that the nonlinearity of device performance with illuminated sun intensity is attributed not to the slow bulk diffusion problem of cobalt electrolyte but to the limited mass transport in narrowed pore volume in mesoscopic $TiO_2$ electrode.

The Characteristics of Biodegradation for VOCs in Unsaturated Soil by Bio-filter (Bio-filter에 의한 토양중의 VOCs 분해특성)

  • Sohn Jong-Ryeul;Jang Myung-Bae;Cho Kwang-Myung
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.19-24
    • /
    • 2004
  • The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOCs transport, microbial activity, and sorptive interactions in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOCs transport that is induced in engineered remediation processes such as vapor extraction was not considered. The utility of the model was assessed through its ability to describe experimental observations from diffusion experiments using toluene as a representative VOCs in well-defined soil columns that contained a toluene degrading bacterium, Pseudomonas putida G7 md Fl, as the sole active microbial species. The gas-liquid mass-transfer was found to be a key parameter controlling the ability of bacteria to degrade VOCs. This finding indicates that soil size and geometry are likely to be important parameters in assessing the possible success of natural attenuation of VOCs in contaminated unsaturated soils. Therefore we found that Pseudomonas putida G7 and Fl were very effective to remove of refractory pollutants such as toluene in soil by Bio-filter

A Quasi Two-Dimensional Model for Gas Discharge Simulation Using FE-FCT Method (기체 방전의 시뮬레이션을 위한 FE-FCT를 이용한 준 2차원적 수치 모델)

  • Koh, Wook-Hee;Park, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.511-517
    • /
    • 2008
  • A quasi two-dimensional model for numerical simulation of gas discharge is presented, based on the finite-element flux-corrected transport method. A one-dimensional continuity convection-diffusion equation coupled Poisson's equation is solved to calculate the charge density variation and the electric field is evaluated by the classical disk method. Results calculated for various benchmark problems verify the accuracy of the proposed model and illustrate its performance. This model has been applied to a streamer simulation, and the results are shown to agree well with previously published results.

Applicability of the Krško nuclear power plant core Monte Carlo model for the determination of the neutron source term

  • Goricanec, Tanja;Stancar, Ziga;Kotnik, Domen;Snoj, Luka;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3528-3542
    • /
    • 2021
  • A detailed geometrical model of a Krško reactor core was developed using a Monte Carlo neutron transport code MCNP. The main goal of developing an MCNP core model is for it to be used in future research focused on ex-core calculations. A script called McCord was developed to generate MCNP input for an arbitrary fuel cycle configuration from the diffusion based core design package CORD-2, taking advantage of already available material and temperature data obtained in the nuclear core design process. The core model was used to calculate 3D power density profile inside the core. The applicability of the calculated power density distributions was tested by comparison to the CORD-2 calculations, which is regularly used for the nuclear core design calculation verification of the Krško core. For the hot zero power and hot full power states differences between MCNP and CORD-2 in the radial power density profile were <3%. When studying axial power density profiles the differences in axial offset were less than 2.3% for hot full power condition. To further confirm the applicability of the developed model, the measurements with in-core neutron detectors were compared to the calculations, where differences of 5% were observed.

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

A Numerical Study of Atmospheric Pollutant Dispersionon over South Korea on Sunny Summer Days (남한 지역에서 여름철 맑은 날의 대기 오염물 확산에 대한 수치적 연구)

  • 이태영;김승범
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.411-427
    • /
    • 1996
  • A Lagrangian dispersion model has been developed to study the transport of atmospheric pollutants over the southern Korean peninsula on sunny summer days. A mesoscale atmospheric model has been employed to provide the wind fields and information for turbulent diffusion for the calculation of trajectories using a conditioned particle technique. The model has been applied to the simulation of the transport of atmospheric pollutants emitted from five sources in the coastal locations under various synoptic scale winds. Under calm synoptic scale condition, the particles emitted during daytime are mixed vertically and transported toward inland by sea-breeze, according to the model simulation. The particles are then transported upward at she sea-breeze front or by the upward motion over the mountain, and some particles show tendency of returning toward the coast by the return flow of the sea-breeze circulation. The particles are found to remain over the peninsula throughout the integration period under calm synoptic scale condition. When there is westerly synoptic scale winds the particles emitted in the west coast can reach the east coast within a day of faster depending on the speed. With a synoptic scale southerly wind of 5 m/s, most of the particles from the fine sources are advected toward inland during daytime. During nighttime, significant portion of particles released in the west coast remains over the land, while most particles released in the east coast move toward the sea to the east of the middle peninsula.

  • PDF

A Numerical Model for Nuclide Migration in the Far-field of the Repository (처분장 Far-field에서의 핵종이동 수치 모델)

  • Lee, Youn-Myoung;Lee, Han-Soo;Park, Heui-Joo;Cho, Won-Jin;Han, Kyong-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.267-276
    • /
    • 1989
  • A numerical model for nuclide migration through fractured rock media has been developed. Nuclide transport with groundwater in rock fissures and the diffusion of nuclides into rock matrix are considered one-dimensionally . In the safety assessment of the repository for radioactive waste, this one-dimensional model by the finite-difference scheme, which enables us not only to use more realistic boundary conditions but also to model the nonhomogeneous rock medium as the multilayered media, can be used effectively with the analytical mode. The solution by the numerical model will be verified analytically, and then extended to the double-layered rock medium transport model.

  • PDF

Two-Dimensional Numerical Simulation of Saltwater intrusion in Estuary with Sigma-Coordinate Transformation (연직좌표변환을 이용한 하구에서의 염수침투에 관한 2차원 수치모의)

  • Bae, Yong-Hoon;Park, Seong-Soo;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1263-1267
    • /
    • 2007
  • A more complete two-dimensional vertical numerical model has been developed to describe the saltwater intrusion in an estuary. The model is based on the previous studies in order to obtain a better accuracy. The non-linear terms of the governing equations are analyzed and the $\sigma$-coordinate system is employed in the vertical direction with full transformation which is recently issued in several studies because numerical errors can be generated during the coordinate transformation of the diffusion term. The advection terms of the governing equations are discretized by an upwind scheme in second-order of accuracy. By employing an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. In previous researches, some terms induced from the transformation have been intentionally excluded since they are asked the complicate discretization of the numerical model. However, the lack of these terms introduces significant errors during the numerical simulation of scalar transport problems, such as saltwater intrusion and sediment transport in an estuary. The numerical accuracy attributable to the full transformation is verified by comparing results with a previous model in a simply sloped topography. The numerical model is applied to the Han River estuary. Very reasonable agreements for salinity intrusion are observed.

  • PDF

The analysis on the Energy Distribution Function for Electron in SiH4-Ar Gas Mixtures (SiH4-Ar혼합기체의 전자분포함수 해석)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.65-69
    • /
    • 2004
  • This paper calculates and gives the analysis of electron swarm transport coefficients as described electric conductive characteristics of pure Ar, pure $SiH_4$, Ar-$SiH_4$ mixture gases($SiH_4$-0.5%, 2.5%, 5%) over the range of E/N = 0.01~300[Td], P = 0.1, 1, 5.0 [Torr] by Monte Carlo the backward prolongation method of the Boltzmann equation using computer simulation without using expensive equipment. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. Electron swann parameters in argon were drastically changed by adding a small amount of mono-silane. The electron drift velocity in these mixtures showed unusual behaviour against E/N. It had negative slope in the medium range of E/N, yet the slope was not smooth but contained a small hump. The longitudinal diffusion coefficient also showed a corresponding feature in its dependence on E/N. A two-tenn approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

Transport of Some Solutes in Blood Plasma Through Poly(2-Hydroxyethyl Methacrylate) Hydrogel Membrane (혈장내 염의 Poly(2-Hydroxyethyl Methacrylate) 격막 투과현상)

  • Jee Jong Gi;Jhon Mu Shik;Ree Tai Kyue
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.304-310
    • /
    • 1978
  • The relative permeabilities, distribution coefficients and diffusion coefficient of some salts which are important components in blood plasma through a poly(HEMA) membrane were measured. The crosslinker which was used for preparing the membrane was tetraethylene glycol dimethacrylate(TEGDMA), the weight percentage of the latter was about 2.8. We found that the diffusion coefficients ($D_m$) of the solutes decrease exponentially with increasing molecular weight, and also that $D_m$'s decrease linearly (except urea) with cylindrical radius (a). These facts were explained by a sieve pore flow model. The relative permeability and diffusion coefficient of urea at various temperature were larger than those of other solutes such as glycine, ${\beta}$-alanine, D-glucose, saccharose and maleic acid. The result indicates that the poly(HEMA) membrane might be suitable for hemodialysis application.

  • PDF