• 제목/요약/키워드: transponder

Search Result 265, Processing Time 0.023 seconds

Digital Transponder Technology for the Exploration of Space (우주 탐사를 위한 디지털 트랜스폰더 기술)

  • Won, Young-Jin;Lee, Jin-Ho;Kim, Jin-Hee;Lee, Sang-Ryool
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.80-89
    • /
    • 2010
  • Transponder is the significant equipment for the telemetry and telecommand operation between the ground station and the satellite. Recently, various transponder technology like Compact Standard Transponder(CST), Small User Transponder(SUT) for data relay satellite, Dual Mode TT&C Transponder(DMT) for large user, and Deep Space Transponder(DST) for deep space mission have been developed according to the communication method and user requirements. Especially, the transponder based on the digital technology comes into the spotlight in the satellite communication field. This paper describes the various analog transponder technology and the state-of-art digital transponder technology grafted onto the existing analog transponder technology.

Design of a Transponder IC using RF signal (RF signal을 이용한 Transponder IC 설계)

  • 김도균;이광엽
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.911-914
    • /
    • 2000
  • 본 논문에서는 배터리가 없는 ASK 전송방식의 RFID(Radio Frequency IDentification) Transponder 칩 설계에 관한 내용을 다룬다. Transponder IC는 power-generation 회로, clock-generation 회로, digital block, modulator, overoltge protection 회로로 구성된다. 설계된 칩은 저전력 회로를 적용하여 원거리 transponder칩을 구현할 수 있도록 하였다. 설계된 회로는 0.25㎛ 표준 CMOS 공정으로 레이아웃하여 제작하였다.

  • PDF

A Passive Transponder for Visible Light Identification Using Ultrasonic wave (초음파를 이용한 가시광인식 수동형 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we newly developed a passive transponder for visible light identification (VLID) using ultrasonic wave. The solar cell in the transponder receives the reader light and generates current for supplying power to the transponder circuit. At the same time the solar cell detects the interrogating signal in the visible light from the reader. The transponder recognizes the interrogating signal and generates the responding signal using ultrasonic wave. In experiments, we used 40 kHz ultrasonic wave for the responding signal from the transponder. The maximum read distance was about 3.4 m when the transponder was exposed to the reader light of 24W LED array.

The Communication Satellite Transponder Testing by EGSE System

  • Jo, Jin-Ho;Woo, Hyung-Je;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.36-40
    • /
    • 2007
  • EGSE is used to check out satellite payload during the development prior to launch. The EGSE represented in this paper is a test system for Ka band communication transponder of COMS. The EGSE consist of two subsystems as CTS subsystem and PCTS subsystem. Communication Test subsystem (CTS) performs satellite transponder RF performance testing, data analysis and trending. Most of transponder RF performances are automatically tested by the CTS subsystem. Power, Command & Telemetry subsystem (PCTS) monitor telemetry messages from the transponder and send tele-commands to satellite transponder for the configuration change. PCTS also provide simulated S/C power to the transponder during the ground validation testing. The EGSE test functions are verified by the transponder simulator testing and will be used for the flight model transponders testing.

  • PDF

A Passive Transponder for Visible Light Identification Using a Solar Cell (솔라셀을 이용한 가시광 인식용 수동형 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.238-244
    • /
    • 2014
  • In this paper, we introduce a new passive transponder that operates without external power in a visible light identification system. The transponder consists of a solar cell, a photodiode, a microprocessor, and a visible LED. When a reader sends light to the transponder, the solar cell generates current from the reader light and supplies power to the other elements in the transponder. At the same time, the photodiode detects the pulse in the reader light and initiates a microprocessor to generate and send a responding light to the reader. In experiments, we realized a passive transponder using a solar cell that operated at a distance of 1m without external power.

Development of High-Speed RFID Reader System (고속 RFID Reader 시스템 개발)

  • Shin, Jae-Ho;Hong, Yeon-Chan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.915-919
    • /
    • 2007
  • This paper proposed a transponder detection method to reduce recognition time in RFID system. It's also shown that conventional procedure of communication in the system could cause a waste of time when a reader recognizes a transponder. The reduction of recognition time can be obtained by developing a circuit to detect a transponder actively. Detecting a transponder is achieved by using the voltage variation of reader antenna voltage that happens when a transponder approaches to the vicinity of magnetic field formed by the reader. By adding a comparator to the antenna receiver of a reader, the reader can perceive approach or existence of a transponder. A reader for experiment is made using the MFRC500 by Phillips that supports ISO/IEC 14443 protocol. Comparing the proposed method with the conventional methods by experiment, there are 47.5ms reduction of recognition time maximally and 12ms in average.

A Passive Visible Light Transponder Using an LED for an Optical Transceiver (LED를 광송수신 소자로 사용한 수동형 가시광 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • In this paper, we introduce a passive transponder in which an LED is used for both a light transmitter and a receiver, and a solar cell is used for supplying power to the all devices in the transponder. The LED in the transponder operates as a photodetector in the receiving mode, and acts as a light source in the transmitting mode. The current responsivity of the LED detector was measured to be in the order of $10^{-4}A/W$, and the receiving bandwidth with a load resistance of $10k{\Omega}$ was about 10 to 30 kHz. Using the LED for an optical transceiver in a VLID transponder, the detection range was about 70 cm when the transponder was illuminated by the visible light from a $3{\times}3$ LED array in a reader.

Design and Implementation of a RFID Transponder Chip using CMOS Process (CMOS 공정을 이용한 무선인식 송수신 집적회로의 설계 및 제작)

  • 신봉조;박근형
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.881-886
    • /
    • 2003
  • This paper describes the design and implementation of a passive transponder chip for RFID applications. Passive transponders do not have their own power supply, and therefore all power required for the operation of a passive transponder must be drawn from the field of the reader. The designed transponder consists of a full wave rectifier to generate a dc supply voltage, a 128-bit mask ROM to store the information, and Manchester coding and load modulation circuits to be used for transmitting the information from the transponder to the reader. The transponder with a size 410 x 900 ${\mu}$m$^2$ has been fabricated using 0.65 ${\mu}$m 2-poly, 2-metal CMOS process. The measurement results show the data transmission rate of 3.9 kbps at RF frequency 125 kHz.

A Wireless Identification System Using a Solar Cell and RF Transceivers (솔라셀과 RF송수신기를 이용한 무선인식장치)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.337-343
    • /
    • 2016
  • In this paper, we newly introduce a wireless identification system using a solar cell and RF transceivers. The reader sends interrogating signal to a transponder using LED visible light, and the transponder responds to the reader using RF signal. The transponder consists of a solar cell, an amplifier, a microprocessor, and an RF transmitter. The solar cell receives the visible light from the reader and generates current to supply electric power to the other devices in the transponder. At the same time, the solar cell detects interrogating signal in the reader light. The microprocessor senses the interrogating signal and generates a responding signal. The RF transmitter radiates the responding signal to the reader. The transponder is a passive circuit because it operates without external power. In experiments, the maximum read distance between a reader and a transponder was about 1.6 meter.

Field Test of High-Speed Transponder System for Rail Transport (철도교통용 고속 트랜스폰더시스템 실차 시험)

  • Park, Sungsoo;Kim, Seong Jin;Lee, Jae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.208-213
    • /
    • 2016
  • In order to detect the exact position of high-speed train, it is necessary to obtain location information from the transponder tag installed along the track. When the transponder tag receives the energizing signal from the train, it sends a telegram to the reader, which includes location information. In high-speed railway environment, this telegram can be corrupted by electromagnetic interference caused by onboard electric train power equipments or wayside devices. In order to assess the performance of transponder system under this harsh environment, we carried out field test using HEMU-430X. Field test results are briefly introduced and discussed for the evaluation of the transponder system under development.