• 제목/요약/키워드: transparent thin film transistor

검색결과 88건 처리시간 0.03초

Antireflective ZTO/Ag bilayer-based transparent source and drain electrodes for highly transparent thin film transistors

  • 최광혁;김한기
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.110.2-110.2
    • /
    • 2012
  • We reported on antireflective ZnSnO (ZTO)/Ag bilayer and ZTO/Ag/ZTO trilayer source/drain (S/D) electrodes for all-transparent ZTO channel based thin film transistors (TFTs). The ZTO/Ag bilayer is more transparent (83.71%) and effective source/drain (S/D) electrodes for the ZTO channel/Al2O3 gate dielectric/ITO gate electrode/glass structure than ZTO/Ag/ZTO trilayer because the bottom ZTO layer in the trilayer increasea contact resistance between S/D electrodes and ZTO channel layer and reduce the antireflection effect. The ZTO based all-transparent TFTs with ZTO/Ag bilayer S/D electrode showed a saturation mobility of 4.54cm2/Vs and switching property (1.31V/decade) comparable to TTFT with Ag S/D electrodes.

  • PDF

ZnO 기반의 투명 박막 트랜지스터 제작을 위한 Active-layer의 최적화에 대한 연구 (Optimization of active layer for the fabrication of transparent thin film transistor based on ZnO)

  • 장성필;이상규;손창완;임재현;송용원;주병권;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.94-95
    • /
    • 2007
  • We have observed electrical properties of ZnO thin films for the fabrication of transparent thin film transistor. ZnO thin films were deposited on $Al_2O_3$(0001) substrate at various temperatures by pulsed laser deposition(PLD). The third of harmonic(355nm) Nd:YAG laser was used for pulsed laser deposition. X-ray diffraction(XRD), field emission-scanning electron microscope(FE-SEM), and photoluminescence were used to characterize physical and optical properties of ZnO thin film.. The results indicated the ZnO film showed good optical properties as increasing temperatures, with low FWHM of exciton-related peak and XRD(0002) peak.

  • PDF

Single-Crystal Silicon Thin-Film Transistor on Transparent Substrates

  • Wong, Man;Shi, Xuejie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1103-1107
    • /
    • 2005
  • Single-crystal silicon thin films on glass (SOG) and on fused-quartz (SOQ) were prepared using wafer bonding and hydrogen-induced layer transfer. Thinfilm transistors (TFTs) were subsequently fabricated. The high-temperature processed SOQ TFTs show better device performance than the low-temperature processed SOG TFTs. Tensile and compressive strain was measured respectively on SOQ and SOG. Consistent with the tensile strain, enhanced electron effective mobility was measured on the SOQ TFTs.

  • PDF

Fabrication and Characteristics of Indium Tin Oxide Films on CR39 Substrate for OTFT

  • Kwon, Sung-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권5호
    • /
    • pp.267-270
    • /
    • 2006
  • The Indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. ITO thin films deposited at room temperature because CR39 substrates its glass-transition temperature of is $130^{\circ}C$. ITO thin films used bottom and top electrode and for organic thin film transparent transistor.(OTFT) ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300 - 800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300 - 800 nm) measured without post annealing process and $9.83{times}10{-4}{\Omega}cm$ a low resistivity was measured thickness of 300 nm.

A Protective Layer on the Active Layer of Al-Zn-Sn-O Thin-Film Transistors for Transparent AMOLEDs

  • Cho, Doo-Hee;KoPark, Sang-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Cho, Kyoung-Ik;Ryu, Min-Ki;Chung, Sung-Mook;Cheong, Woo-Seok;Yoon, Sung-Min;Hwang, Chi-Sun
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.137-142
    • /
    • 2009
  • Transparent top-gate Al-Zn-Sn-O (AZTO) thin-film transistors (TFTs) with an $Al_2O_3$ protective layer (PL) on an active layer were studied, and a transparent 2.5-inch QCIF+AMOLED (active-matrix organic light-emitting diode) display panel was fabricated using an AZTO TFT backplane. The AZTO active layers were deposited via RF magnetron sputtering at room temperature, and the PL was deposited via two different atomic-layer deposition (ALD) processes. The mobility and subthreshold slope were superior in the TFTs annealed in vacuum and with oxygen plasma PLs compared to the TFTs annealed in $O_2$ and with water vapor PLs, but the bias stability of the TFTs annealed in $O_2$ and with water vapor PLs was excellent.

Fabrication and Characterization of Zinc-Tin-Oxide Thin Film Transistors Prepared through RF-Sputtering

  • Do, Woori;Choi, Jeong-Wan;Ko, Myeong-Hee;Kim, Eui-Hyeon;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.207.2-207.2
    • /
    • 2013
  • Oxide-based thin film transistors have been attempted as powerful candidates for driving circuits for active-matrix organic light-emitting diodes and transparent electronics. The oxide TFTs are based on the amorphous multi-component oxides involving zinc, indium, and/or tin elements as main cation sources. The current work employed RF sputtering in order to deposit zinc-tin oxide thin films applicable to transparent oxide thin film transistors. The deposited thin film was characterized and probed in terms of materials and devices. The physical/chemical characterizations were performed using X-ray diffraction, Atomic Force Microscopy, Spectroscopic Ellipsometry, and X-ray Photoelectron Spectroscopy. The thin film transistors were fabricated using a bottom-gated structure where thermally-grown silicon oxide layers were applied as gate-dielectric materials. The inherent properties of oxide thin films are combined with the corresponding device performances with the aim to fabricating the multi-component oxide thin films being optimized towards transparent electronics.

  • PDF

Fabrication and Characteristics of Indium Tin Oxide Films on Polycarbonates CR39 Substrate for OTFTs

  • Kwon, Sung-Yeol
    • 한국재료학회지
    • /
    • 제17권4호
    • /
    • pp.232-235
    • /
    • 2007
  • Indium tin oxide (ITO) films were deposited on polycarbonate CR39 substrate using DC magnetron sputtering. ITO thin films were deposited at room temperature because glass-transition temperature of CR39 substrate is $130^{circ}C$ ITO thin films are used as bottom and top electrodes and for organic thin film transparent transistor (OTFT). The electrodes electrical properties of ITO thin films and their optical transparency properties in the visible wavelength range (300-800 nm) strongly depend on the volume of oxygen percent. The optimum resistivity and transparency of ITO thin film electrode was achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85% transparency in the visible wavelength range (300-800 nm) was measured without post annealing process, and resistivity as low as $9.83{\times}^{TM}10^{-4}{\Omega}$ cm was measured at thickness of 300 nm.

Plastic 기판 상의 투명성과 유연성을 지닌 Zinc Oxide 박막 트랜지스터 (Mechanically Flexible and Transparent Zinc Oxide Thin Film Transistor on Plastic Substrates)

  • 박경애;안종현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.10-10
    • /
    • 2009
  • We have fabricated transparent and flexible thin film transistor(TFT) on polyethylene terephthalate(PET) substrate using Zinc Oxide (ZnO) and Indium Tin Oxide (ITO) film as active layer and electrode. The transfer printing method was used for printing the device layer on target plastic substrate at room temperature. This approach have an advantage to separate the high temperature annealing process to improve the electrical properties of ZnO TFT from the device process on plastic substrate. The resulting devices on plastic substrate presented mechanical and electrical properties similar with those on rigid substrate.

  • PDF

Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors

  • Shin, Jae-Heon;Lee, Ji-Su;Hwang, Chi-Sun;KoPark, Sang-Hee;Cheong, Woo-Seok;Ryu, Min-Ki;Byun, Chun-Won;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • 제31권1호
    • /
    • pp.62-64
    • /
    • 2009
  • We report on the bias stability characteristics of transparent ZnO thin film transistors (TFTs) under visible light illumination. The transfer curve shows virtually no change under positive gate bias stress with light illumination, while it shows dramatic negative shifts under negative gate bias stress. The major mechanism of the bias stability under visible illumination of our ZnO TFTs is thought to be the charge trapping of photo-generated holes at the gate insulator and/or insulator/channel interface.