• Title/Summary/Keyword: transparent semiconductor

Search Result 238, Processing Time 0.028 seconds

Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials (비정질 산화물 반도체의 열전특성)

  • Kim, Seo-Han;Park, Cheol-Hong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.52-52
    • /
    • 2018
  • Only approximately 30% of fossil fuel energy is used; therefore, it is desirable to utilize the huge amounts of waste energy. Thermoelectric (TE) materials that convert heat into electrical power are a promising energy technology. The TE materials can be formed either as thin films or as bulk semiconductors. Generally, thin-film TE materials have low energy conversion rates due to their thinness compared to that in bulk. However, an advantage of a thin-film TE material is that the efficiency can be smartly engineered by controlling the nanostructure and composition. Especially nanostructured TE thin films are useful for mitigating heating problems in highly integrated microelectronic devices by accurately controlling the temperature. Hence, there is a rising interest in thin-film TE devices. These devices have been extensively investigated. It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (${\kappa}$) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (${\mu}$) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In-Zn-O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was measured to have poor ${\kappa}$ and high electrical conductivity compared to crystalline $In_2O_3:Sn$ (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in the transparent display devices.

  • PDF

Oxide Semiconductor Thin Film Transistor based Solution Charged Cellulose Paper Gate Dielectric using Microwave Irradiation

  • Lee, Gi-Yong;Jo, Gwang-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.207.2-207.2
    • /
    • 2015
  • 차세대 디스플레이 소자로서 TAOS TFT (transparent amorphous oxide semiconductor Thin Film Transistor)가 주목 받고 있다. 또한, 최근에는 값 비싼 전자 제품을 저렴하고 간단히 처분 할 수 있는 시스템으로 대신 하는 연구가 진행되고 있다. 그중, cellulose-fiber에 전기적 시스템을 포함시키는 e-paper에 대한 관심이 활발하다. cellulose fiber는 가볍고 깨지지 않으며 휘는 성질을 가지고 있다. 가격도 저렴하고 가공이여 용이하여 차세대 기판의 재료로서 주목받고 있다. 하지만, cellulose-fiber 위에는 고온의 열처리공정과 고품질 박막 성장이 어려워서 TFT 제작에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해서 산화물 반도체를 이용하여 TFT를 제작한 사례가 보고되고 있다. 또한, 채널 물질 뿐만 아니라 cellulose fiber에도 다른 물질을 첨가하거나 증착하여 전기적 화학적 특성을 개선시킨 사례도 많이 보고되고 있다. 본 연구에서는 가장 저품질의 용지로 알려진 신문지와 A4용지를 gate dielectric을 이용하여서 a-IGZO TFT를 제작하였다. 하지만, cellulose fiber로 만들어진 TFT의 경우에는 고온의 열처리가 불가능 하다. 따라서 저온에서 높을 효율은 보이는 microwave energy를 이용하여 열처리를 진행하였다. 추가적으로 저품질의 종이의 특성을 개선시키기 위해서 high-k metal-oxide solution precursor를 첨가 하여 TFT의 특성을 개선시켰다. 결과적으로 cellulose fiber에 metal-oxide solution precursor을 첨가하는 공정과 micro wave를 조사하는 방법을 사용하여 100도 이하에서 cellulose fiber를 저렴하고 우수한 성능의 TFT를 제작에 성공하였다.

  • PDF

White Organic Light-emitting Diodes using the Tandem Structure Incorporating with Organic p/n Junction

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.8 no.2
    • /
    • pp.20-24
    • /
    • 2007
  • Efficient white organic light-emitting diodes are fabricated with the blue and red electroluminescent (EL) units electrically connected in a stacked tandem structure by using a transparent doped organic p/n junction. The blue and red EL units consist of the light-emitting layer of 1,4-bis(2,2-diphenyl vinyl)benzene (DPVBi) and 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j] quinolizin-8-yl)vinyl]-4H-pyran) (DCM2) doped tris(8-hydroxyquinoline) aluminum $(Alq_3)$, respectively. The organic p-n junction consists of ${\alpha}-NPD$ doped with $FeCl_3$ (15 % by weight ratio) and $Alq_3$ doped with Li (10 %). The EL spectra exhibit two peaks at 448 and 606 nm, resulting in white light-emission with the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.36, 0.24). The tandem device shows the quantum efficiency of about 2.2 % at a luminance of 100 $cd/m^2$, higher than individual blue and red EL devices.

Electrical Characteristic Analysis of IGZO TFT with Poly (4-vinylphenol) Gate Insulator according to Annealing Temperature (Poly (4-vinylphenol) 게이트 절연체를 적용한 IGZO TFT의 열처리 온도에 따른 전기적 특성 분석)

  • Park, Jung Hyun;Jeong, Jun Kyo;Kim, Yu Jeong;Jun, Jung Byung;Lee, Ga Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.97-101
    • /
    • 2017
  • In this paper, IGZO thin film transistor (TFT) was fabricated with cross-linked Poly (4-vinylphenol) (PVP) gate dielectric for flexible, transparent display applications. The PVP is one of the candidates for low-temperature gate insulators. MIM structure was fabricated to measure the leakage current and evaluate the insulator properties according to the annealing temperature. Low leakage current ( <0.1nA/cm2 @ 1MV/cm ) was observed at $200^{\circ}C$ annealing condition and decreases much more as the annealing temperature increases. The electrical characteristics of IGZO TFT such as subthreshold swing, mobility and ON/OFF current ratio were also improved, which shows that the performance of IGZO TFTs with PVP can be enhanced by reducing the amount of incomplete crosslinking in PVP.

  • PDF

Electrical properties of the Al doped ZnO thin films fabricated by RF magnetron sputtering system with working pressure and oxygen contents (RF magnetron sputtering법으로 제조한 Al doped ZnO 박막의 산소함량과 압력변화에 따른 전기적 특성 변화)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.77-81
    • /
    • 2010
  • The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering and effects of working pressure and oxygen contents on the electrical properties were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM for the 70mTorr. From the surface analysis (AFM), the number of crystal grain of AZO thin film increased as working pressure increased. The film deposited with 70mTorr of working pressure showed n-type semiconductor characteristic having suitable resistivity $-1.59{\times}10^{-2}{\Omega}cm$, carrier concentration $-10.1{\times}10^{19}cm^{-3}$, and mobility $-4.35cm^2V^{-1}s^{-1}$ while other films by 7 mTorr, 20 mTorr of working pressure closed to metallic films. The films including the oxygen represent stoichiometric composition similar to the oxide. The transmittance of the film was over 85% in the visible light range regardless of the changes in working pressure and oxygen contents.

High-performance thin-film transistor with a novel metal oxide channel layer

  • Son, Dae-Ho;Kim, Dae-Hwan;Kim, Jung-Hye;Sung, Shi-Joon;Jung, Eun-Ae;Kang, Jin-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.222-222
    • /
    • 2010
  • Transparent semiconductor oxide thin films have been attracting considerable attention as potential channel layers in thin film transistors (TFTs) owing to their several advantageous electrical and optical characteristics such as high mobility, high stability, and transparency. TFTs with ZnO or similar metal oxide semiconductor thin films as the active layer have already been developed for use in active matrix organic light emitting diode (AMOLED). Of late, there have been several reports on TFTs fabricated with InZnO, AlZnSnO, InGaZnO, or other metal oxide semiconductor thin films as the active channel layer. These newly developed TFTs were expected to have better electrical characteristics than ZnO TFTs. In fact, results of these investigations have shown that TFTs with the new multi-component material have excellent electrical properties. In this work, we present TFTs with inverted coplanar geometry and with a novel HfInZnO active layer co-sputtered at room temperature. These TFTs are meant for use in low voltage, battery-operated mobile and flexible devices. Overall, the TFTs showed good performance: the low sub-threshold swing was low and the $I_{on/off}$ ratio was high.

  • PDF

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

Effects of Hydrogen Injection by In-Situ and Plasma Post-Treatment on Properties of a ZnO Channel Layer in Transparent Thin Film Transistors (증착시 및 플라즈마 후처리에 의한 수소 주입이 투명 박막 트랜지스터에서 산화아연 채널층의 물성에 미치는 영향)

  • Bang, Jung-Hwan;Kim, Won;Uhm, Hyun-Seok;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • We have investigated the effects of hydrogen injection via in-situ gas addition ($O_2$, $H_2$, or $O_2$ + $H_2$ gas) and plasma post-treatment (Ar or Ar + H plasma) on material properties of ZnO that is considered to be as a channel layer in transparent thin film transistors. The variations in the electrical resistivity, optical transmittance and bandgap energy, and crystal quality of ZnO thin films were characterized in terms of the methods and conditions used in hydrogen injection. The resistivity was significantly decreased by injection of hydrogen; approximately $10^6\;{\Omega}cm$ for as-grown, $1.2\;{\times}\;10^2\;{\Omega}cm$ for in-situ with $O_2/H_2\;=\;2/3$ addition, and $0.1\;{\Omega}cm$ after Ar + H plasma treatment of 90 min. The average transmittance of ZnO films measured at a wavelength of 400-700 nm was gradually increased by increasing the post-treatment time in Ar + H plasma. The optical bandgap energy of ZnO films was almost monotonically increased by decreasing the $O_2/H_2$ ratio in in-situ gas addition or by increasing the post-treatment time in Ar + H plasma, while the post-treatment using Ar plasma hardly affected the bandgap energy. The role of hydrogen in ZnO was discussed by considering the creation and annihilation of oxygen vacancies as well as the formation of shallow donors by hydrogen.

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: sc-CO2 Mixture for the Removal of Post Etch/Ash Residue

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • The result of stripping process for the removal of the post etch/ash Photoresist (PR) residue on an aluminum patterned wafer by using supercritical $CO_2$ ($sc-CO_2$) mixture, was investigated by scanning of electron microscope (SEM) inspection of wafer, measuring the cloud points and visual observation of the state of $sc-CO_2$ mixtures. It was found that $sc-CO_2$ mixtures were made by mixing additives and $sc-CO_2$ should form homogeneous and transparent phase (HTP) in order to effectively and uniformly remove the post etch/ash PR residue on the aluminum patterned wafer using them. The additives were formulated by mixing and co-solvents like an amine compound and fluorosurfactants used as HTP agents, and the PR residue on the wafer were able to be rapidly and effectively removed using the $sc-CO_2$ mixture of HTP. The five kinds of additives were formulated by the recipe of mixing co-solvents and surfactants, which were able to remove PR residue on the wafer by mixing with $sc-CO_2$ at the stripping temperature range from 40 to $80^{\circ}C$. The five kinds of $sc-CO_2$ mixtures which were named as PR removers were made, which were able to form HTP within the above described stripping temperature. The cloud points of $sc-CO_2$ mixtures were measured to find correlation between them and HTP.

  • PDF

Silver Nanowire-based Stretchable and Transparent Electrodes (Silver Nanowire 기반 Stretchable 투명 전극)

  • Lee, Jin-Young;Kim, Su-Yeon;Jeong, Da-Hye;Shin, Dong-Kyun;Yoo, Su-Ho;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2015
  • We have fabricated silver nanowire (AgNW) films as a stretchable and transparent electrode on polydimethylsiloxane (PDMS) substrates using a spray coater. Inherently, they show poor surface roughness and stretchability. To tackle it, we have employed a conductive polymer, poly (3,4-ethylenedioxythiophene) : Poly(styrene sulfonate) (PEDOT : PSS). PEDTO : PSS solution is mixed with AgNWs or spin-coated on the AgNW film. Compared with AgNW film only, PEDOT : PSS film only, and polymer-mixed AgNW films, the AgNW/polymer bilayer films exhibit much better surface roughness and stretchability. It is found that spray-coating of AgNWs on uncured PDMS and spin-coating of PEDOT : PSS solution on the AgNW films enhance the surface roughness of electrodes. Such a bilayer structure also provides a stable resistance under tensile strain due to the fact that each layer acts as a detour route for carriers. With this structure, we have obtained the peak-to-peak roughness ($R_{pv}$) as low as 76.8nm and a moderate increase of sheet resistance (from $10{\Omega}/{\Box}$ under 0% strain to $30{\Omega}/{\Box}$ under 40% strain).